
EUROGRAPHICS 2013 / I. Navazo, P. Poulin
(Guest Editors)

Volume 32 (2013), Number 2

ArtiSketch: A System for Articulated Sketch Modeling

Zohar Levi Craig Gotsman

Technion - Israel Institute of Technology

(a) (b) (c) (d) (e)

Figure 1: Modeling the Prince shape with ArtiSketch: (a) The contours in three 2D sketches are traced. Correspondence between contours in
different frames are color coded. (b) The user poses the 3D skeleton to approximately fit each sketch. (c) ArtiSketch generates a 3D reconstruc-
tion of the articulated shape, which is posed to fit the sketches. (d) The 3D model painted. (e) A novel pose of the articulated shape (obtained
by manipulating the skeleton).

Abstract
We present ArtiSketch - a system which allows the conversion of a wealth of existing 2D content into 3D content
by users who do not necessarily possess artistic skills. Using ArtiSketch, a novice user may describe a 3D model
as a set of articulated 2D sketches of a shape from different viewpoints. ArtiSketch then automatically converts the
sketches to an articulated 3D object. Using common interactive tools, the user provides an initial estimate of the
3D skeleton pose for each frame, which ArtiSketch refines to be consistent between frames. This skeleton may then
be manipulated independently to generate novel poses of the 3D model.

1. Introduction

Creating compelling 3D content is one of the biggest chal-
lenges in 3D graphics. Software tools for acquiring or mod-
eling static geometry are prevalent, but require significant
experience and expertise of the modeler, making the process
time-consuming and costly. Thus the 3D industry is con-
stantly on the lookout for ways to create more 3D content
in less time using more intuitive interfaces.

Drawing on the success of traditional 2D sketch model-
ing, sketch-based 3D modeling is emerging as a possible al-
ternative to the common freeform surface manipulation or
other analytic modeling techniques. In a typical setup, such
as in FiberMesh [NISA07], a user draws and manipulates
3D curves which are intelligently interpolated to form a sur-
face. While reasonably effective, this type of interaction re-
quires the modeler to sketch and operate in 3D, which is dif-
ficult in itself. The alternative is systems such as the popular
Google SketchUp software and those proposed by Rivers et
al. [RDI10] and Kraevoy et al. [KSvdP09] that enable artists,
trained in traditional 2D sketching, to be able to continue to

use a 2D paradigm, but harness it to the creation of static 3D
models. In these systems the artist “models” by sketching
the object silhouette from multiple views interactively or in
advance, usually from at least two orthogonal orthographic
views. Then a process of multi-view surface reconstruction
is applied.

We propose ArtiSketch – a system that takes this method-
ology one step further, allowing novice users to take advan-
tage of the abundance of existing 2D content, such as car-
toon animations and sprites (see Fig. 2) to construct a 3D
model. However, since this content usually depicts animated
shapes, which means that inter-frame motion is present in
the content and has to be accounted for, this is an obstacle for
current systems that require that the object be rigid between
views. We address this issue by assuming that the animation
depicted by the content is articulated, i.e. piecewise-rigid.
We also assume that the animation “imitate real-life”, a con-
cept coined by Disney [TJ87], which translates into object
consistency between frames, i.e. the images obey physical
camera rules. Alas, given a few frames (~3) of content that

c© 2013 The Author(s)
Computer Graphics Forum c© 2013 The Eurographics Association and Blackwell Publish-
ing Ltd. Published by Blackwell Publishing, 9600 Garsington Road, Oxford OX4 2DQ,
UK and 350 Main Street, Malden, MA 02148, USA.

Zohar Levi & Craig Gotsman / ArtiSketch: A System for Articulated Sketch Modeling

follow these assumptions, in the form of a few simple con-
tours, there is still information missing, namely the camera
location and orientation in each of the frames. Without this
crucial information, contours such as those in Fig. 1(a) are
ambiguous, which makes the surface reconstruction prob-
lem intractable. We emphasize that in the systems mentioned
previously, the camera positions are predetermined and the
user is limited to sketching in these views only. Thus we are
interested in the following question: Can the user somehow
supply, through a convenient interface, an approximate ini-
tial camera transformation that is sufficient for the computer
to fully synchronize the cameras and reconstruct the 3D ob-
ject? To answer this question we start by proposing a novel
way for the user to supply this information. We add to our
setup a simple 3D skeleton that controls the dynamic parts
of the 3D object sketched in the input frames. A skeleton
is commonly used for manipulating, posing, and animating
a 3D object. In our setup we require that the user manipu-
lates the skeleton to achieve the inverse: Given a 2D sketch
and a skeleton, pose the skeleton to imitate the pose of the
3D object depicted in the sketch. Adding this requirement,
we encounter and solve a new problem, which we believe
is interesting in its own right: Given a number of articulated
sketches with initial skeleton poses, reconstruct a plausible
3D object whose silhouettes at those poses coincide with
the sketches. In the rest of the paper we propose a solu-
tion to this problem, resulting in ArtiSketch, a system for
articulated sketch modeling. ArtiSketch is not limited only
to inputs which seemingly depict orthographic views, but
can also handle perspective views, allowing for scaling of
the shape between frames. Since we cannot expect from the
user a precise placement of the skeleton, ArtiSketch uses a
novel algorithm that synchronizes the camera views based
on the user initial poses.

1.1. Contribution

We introduce a reconstruction problem which has not been
treated before, and propose a solution in the form of our Ar-
tiSketch system. This involves the following:

• An algorithm for solving for the virtual camera positions
associated with each sketch in a given set, where an initial
estimate for each is given through a skeleton pose.

• An algorithm for reconstruction of a single 3D triangle
mesh consistent with multi-frame articulated silhouette
data.

1.2. Related Work

In this review of prior art we will not mention sketch-based
methods that mainly propose new user interface tools to ma-
nipulate a 3D object, e.g. Teddy and its evolutions such as
FiberMesh [NISA07] or the rigged version [BJD∗12], but
focus instead on more relevant methods that reconstruct a
surface that fits a set of input sketches or silhouettes. A

Figure 2: Prince sprites. Marked in black are the three frames from
a 2D sequence that were used in the reconstruction of the prince in
Fig. 1.

more comprehensive review of sketch-based methods can be
found in [OSSJ09]. Kraevoy et al. [KSvdP09] described a
system that uses contour sketches to design a new 3D sur-
face. Their system deforms a template mesh such that its
outline conforms with the sketches. They primarily use one
orthographic view, and the heart of the algorithm is finding
a correspondence between the contour vertices and the mesh
silhouettes. This is done by dynamic programming based on
proximity and normal difference. The template is then de-
formed to fit the sketches. One limitation of this method is
that the template should be viewed through standard ortho-
graphic views (front, side, and top), otherwise the deforma-
tion will warp it unnaturally. Unlike our method, Kraevoy
et al. [KSvdP09] do not require that the user segment the
sketches and make a careful assignment of the contours to
the model parts. Thus, the only way to prevent the corre-
sponding curves from “sliding” to undesired areas of the
template, is to make sure that the template is very close to
the contours. Rivers et al. [RDI10] take a different approach,
modeling each part separately without the need for a tem-
plate. They let the user sketch each part of the model from
different orthogonal orthographic views (front, side, top).
The parts are then smoothed and combined using CSG oper-
ations, using a method to perform the 3D CSG operations as
2D CSG operations on the projection plane.

[KH06] is a system for inferring plausible 3D free-form
shapes from visible-contour sketches. [SKSK09] describes
an approach that consolidates and disambiguates sketched
2D curves into a 3D interpretation. More recently Xu et
al. [XZZ∗11] introduced an algorithm for 3D object model-
ing where the user is inspired by an object captured in a sin-
gle photograph. The method leverages the wide availability
of photographs for creative 3D modeling. Since using only
one photo as a guide is not sufficient, they support the mod-
eling process by limiting the model to a small set of 3D can-
didate models. Cashman et al. [CF12] showed that there is
enough information in a collection of 2D images of certain
object classes to generate a full 3D morphable model, even
in the absence of surface texture. The model representation
is a linear combination of subdivision surfaces, which they

c© 2013 The Author(s)
c© 2013 The Eurographics Association and Blackwell Publishing Ltd.

Zohar Levi & Craig Gotsman / ArtiSketch: A System for Articulated Sketch Modeling

fit to image silhouettes and any identifiable key points, using
a combined continuous-discrete optimization strategy. Vla-
sic et al. [VBMP08] demonstrated a practical software sys-
tem for capturing mesh animation details from multi-view
video recordings. The system starts with a stream of silhou-
ette videos and a rigged template mesh. At every frame, it
fits a skeleton to the visual hull, deforms the template us-
ing Linear Blend Skinning (LBS), and adjusts the deformed
template to fit the silhouettes.

1.3. System Outline

Before we provide all the details of ArtiSketch, we give here
a succinct outline of the system functionality; see Fig. 1.

Input:

• A set of F sketches, which we will also refer to as frames.
Each sketch contains a set of simple closed contours. Each
contour is assumed to be the outline (silhouette) of a rigid
part of an articulated 3D object in some pose, as viewed
from a virtual viewpoint. Some of the frames may be
missing some of the contours. For simplicity, we assume
simple closed contours, but the system also allows for
more general contours. These can be traced manually over
an image, or extracted using appropriate methods.
• A skeleton in F (initial) poses - one for each sketch. Con-

structing the skeleton is a simple matter of pointing and
clicking at joints positions to build a tree of bones. It is
also possible to simply adjust existing standard skeletons
of common articulated objects. The user poses the skele-
ton manually by transforming the skeleton joints.
• A correspondence between the set of contours and the

skeleton joints.

Output:

• A triangle mesh surface bound to the skeleton. The mesh
is such that the silhouettes of its LBS, as defined by the
skeletal pose associated with each sketch, fits the contours
of that sketch well.

ArtiSketch proceeds in the following steps:

• Camera calibration: The system optimizes the skeleton
pose in each frame to synchronize the camera views of
each rigid part.
• Surface reconstruction: A variant of the Level Set Method

(LSM) is used to reconstruct each rigid part of the shape.
• Volume reduction: Rim paths matching the sketches are

frozen for each rigid part, and the rest of the surface is
smoothed using a bi-Laplacian.
• Parts consolidation: The individual meshes are fused into

a single final triangle mesh.

ArtiSketch is a complete system. As such, all of the steps
mentioned above are necessary for the system operation.
Some steps, such as the parts consolidation step, are heuris-
tic in nature. Other steps rely heavily on previous work, such

as LSM in the surface reconstruction step and dynamic pro-
gramming in the volume reduction step. Thus we refer the
reader to the prior work on the appropriate subjects, and fo-
cus our discussion only on the modifications that we have
made. These heuristics and modifications, although essen-
tial to our system, are not notable on their own, and our
main contribution is their integration to a working system,
as stated in Section 1.1.

2. Camera Calibration

A common way to reconstruct 3D shapes from multiple
silhouettes is using the so-called visual hull, which is the
largest volume consistent with the given silhouettes. How-
ever, good visual hull reconstructions require silhouettes
from many angles (at least 8), that the shape be static, and
that the camera parameters are known for each silhouette.
ArtiSketch is able to produce good results based on only
three sketches on the average, due to our additional assump-
tion of smoothness and minimalism of the surface. Given
the sketches, ArtiSketch also needs to determine the cam-
era parameters. Moreover since we allow articulated motion,
we need to determine the parameters of a separate camera
per rigid part for each frame. Equivalently, ArtiSketch uses
only one static “real” camera for all the frames and for all
the parts, and moves instead the parts rigidly in front of the
camera using a skeleton. However, it is more natural to talk
about virtual cameras, one per rigid part for each frame. The
virtual camera for a part in an input sketch sees a single con-
tour of a single rigid part, which is assigned (by the user)
to a skeleton joint. The virtual camera position is set to the
transformed position of the real camera. The transformation
which is applied to the real camera is the inverse of the joint
transformation from the first frame to the current frame. The
joint transformation is calculated from the poses of the skele-
ton hierarchy. Setting the skeleton for each frame is a simple
matter of translating the skeleton’s root joint, and then rotat-
ing the individual joints. The user sets the initial pose of the
skeleton for each frame.

We describe a calibration algorithm which, given the ini-
tial poses and optional constraints on the joints rotation
and root translation, calibrates the skeleton (i.e. the virtual
cameras) to maximize the consistency between the silhou-
ette of the shape derived from the sketch and the contour
present in the sketch. This procedure is related to exist-
ing algorithms for calibrating a camera based on silhou-
ette data alone. These are either RANSAC-based for find-
ing a correspondence of frontier points and epipolar tan-
gents [FSPK04, SPM04, WC04], or based on minimizing a
visual hull-dependent energy – an energy that cannot be dif-
ferentiated and thus cannot be efficiently optimized - using
Powell’s derivative-free algorithm [HSC07]. We should note
that there are not many calibration algorithms that are based
on silhouette data alone, and most algorithms rely on image
texture. Our procedure is a fast ICP-based approach, where

c© 2013 The Author(s)
c© 2013 The Eurographics Association and Blackwell Publishing Ltd.

Zohar Levi & Craig Gotsman / ArtiSketch: A System for Articulated Sketch Modeling

(a) (b) (c)

Figure 3: Heart sketch calibration. (a) Two (red) 2D sketches of a heart shape provided by the user. The user has inaccurately positioned the
(gray) skeleton, so that there appears to be a vertical translation between the two contours. As a result, the (red) visual hull is incomplete. (b)
The scene before the camera calibration, with the virtual cameras, and the ray correspondences marked by blue vertical lines. (c) Correctly
positioned skeletons and the resulting visual hull projected onto the two frames after camera calibration.

each global iteration step minimizes a differentiable energy.
We cannot guarantee the stability or convergence of this pro-
cess, and similarly to ICP, our method is sensitive to the ini-
tial “guess”, which should be close enough to the required
minimum. Nevertheless, where ArtiSketch is concerned we
expect from the user reasonable initial poses. We conducted
a small user study to test this expectation. The users were
able to pose a skeleton successfully, such that ArtiSketch
converged to a local minimum and achieved good view syn-
chronization. On the average it took a novice user up to five
minutes per frame to pose the skeleton, and a professional
3D animator up to two minute. Both test groups found the
task easy.

2.1. Calibrating Two Cameras

Most popular methods for constructing a visual hull are
voxel-based [EBBN05]. The idea is to discretize the region
of space which the object lies in with a cubic voxel grid,
and ”carve” away voxels that are not contained in the in-
tersection of the generalized “cones” defined by each of the
silhouette contours. Thus each surviving voxel defines a cor-
respondence between rays of the different views intersecting
that voxel, and, by definition, there is one ray per view for
each voxel.

As opposed to the conventional “volume carving”, Ar-
tiSketch must also determine the relative position of the vir-
tual cameras associated with each contour in each sketch.
We start by considering the case of a single rigid object (one
contour in each frame) and two sketches, which result in two
virtual cameras. One camera, A, is fixed and the other cam-
era, B, is to be calibrated relative to A. Call an A-ray (B-ray,
resp.) a ray emanating from A (B, resp.) through its contour
in the image plane. As mentioned before, if the two cameras
are calibrated (i.e. positioned correctly in space relative to
each other), an A-ray should intersect (i.e. correspond to) a
B-ray at some voxel. If not, some A-rays will not intersect
any B-rays, and this part of the surface would be missing
and not conform with the sketches. Thus the objective is to

maximize the number of intersections between A-rays and B-
rays, or more specifically, minimize the Hausdorff distance
between the two sets of rays. When the cameras are perfectly
calibrated, and the silhouette contours are exact, each A-ray
should intersect a B-ray and vice-versa.

We propose a new calibration algorithm that consists of
two steps, which are alternated similarly to the well-known
Iterated Closest Point (ICP) algorithm [BM92]:

• Find correspondences between A-rays and B-rays, where
the rays are discretized by the voxels.

• Find a camera transformation that optimizes an energy
based on the correspondences.

2.2. Ray Correspondence

The first step is to find a correspondence between A-rays
and B-rays. A finite number of A-rays and B-rays are gener-
ated by projecting the center of each voxel of the discretized
space onto a discrete 2D pixel grid of the sketch, and de-
termining if it falls on the contour. Our experiments showed
that it is better to exclude rays that fall inside the shape (as
well as outside); namely, we match only rays that contribute
to the surface of the object. We say that a voxel is hit by cam-
era A if an A-ray intersects the voxel, i.e. projects its center
onto a contour pixel in the sketch. An A-ray corresponds to a
B-ray if they intersect voxels in close proximity (ideally the
same voxel). This correspondence is represented by these
two voxels, defining the distance between the two rays (ide-
ally zero). In practice, each voxel contains a vector of flags,
one flag per camera, where each flag indicates whether the
voxel is hit by the respective camera.

We compute correspondences between A-rays and B-rays
by traversing the voxels hit by A, and searching a spatial
data structure (k-d tree) for the closest voxel hit by B. When
found, the centers of these two voxels are projected with the
respective cameras, and the two pixels which the respective
projections fall into define a correspondence between the A-
ray and the B-ray. This correspondence, i.e. the identity of
the two voxels which led to the correspondence, is stored in

c© 2013 The Author(s)
c© 2013 The Eurographics Association and Blackwell Publishing Ltd.

Zohar Levi & Craig Gotsman / ArtiSketch: A System for Articulated Sketch Modeling

the 2D pixel array describing the A-rays, only if the cost -
calculated with our distance-based cost function - of the two
voxels is lower than the cost between the previous voxels
that were stored there (the array is initialized to no voxels
with infinite cost). The same is done for the voxels hit by
B, resulting in an A-ray corresponding to each of the B-rays.
See Fig. 3 for an illustration of this method. In the scenario
depicted there, the user has mistakenly positioned the skele-
ton in two contours with a vertical offset, and the camera
calibration procedure detects and corrects this.

We emphasize again that a ray is discretized by all the
voxels that it hits, and they are all projected onto the same
pixel in the 2D array that holds the best correspondence. This
pixel is in fact the ray representative. For example, in our
setup the distance between two rays is the distance between
the pair of voxels that are closest to each other, one from
each set of voxels discretizing each ray. Thus, in the end, we
obtain correspondences between pairs of rays, represented
by single voxels. Note that this is not the same as what would
have been obtained were we simply trying to match pairs of
voxels in the first place without using the 2D pixel arrays
that represent the rays.

In the general case where we need to calibrate ncam > 2
cameras, the cost function gives more weight to voxels hav-
ing more hits (from different cameras). The objective is to
prefer correspondence from the center of the rays intersec-
tion:

cost(vA,vB) = dist(vA,vB)+λ(ncam−nhits(vB))

where vA and vB are voxels of A and B respectively, ncam
is the number of sketches, nhits(v) is the number of cameras
hitting v, and the scalar λ is a weighting factor. Note that this
cost function is not symmetric.

2.3. Optimal Camera Transformation

First we consider the simple case of one rigid part, two cam-
eras, and no constraints. Given the list of voxel correspon-
dences from the previous section, we convert it to a list
of 3D point correspondences, where a voxel is represented
by its center. The optimal rigid camera transformation then
reduces to a simple Procrustes problem: Given two corre-
sponding sets of N points P = {pi}, the centers of the voxels
hit by B, and Q= {qi}, the centers of the corresponding vox-
els hit by A, we seek a rigid transformation T ∈ SE(3) that
consists of a rotation R and a translation t:

T (x) = Rx+ t, R ∈ SO(3), t ∈ R3

that minimizes

Eone_ joint =
N

∑
i=1
||T (pi)−qi||2 .

We now consider the case of more than one rigid part (but

still two cameras). In our setup the camera is static, and we
have a skeleton with degrees of freedom corresponding to
root translation and joint rotations. We have corresponding
point sets Pj and Q j associated with the j’th joint, each hav-
ing N j points, {p ji} and {q ji}, and we need to compute the
best transformation Tj between them. Therefore if we have
J joints, we have to solve J coupled Procrustes problems,
minimizing the energy:

Eskeleton =
J

∑
j=1

N j

∑
i=1
||Tj(p ji)−q ji||2

Tj is a transformation for a joint from one pose to another,
which is the joint transformation in the second pose mul-
tiplied by the joint inverse transformation in the first pose.
Each transformation of a joint in a pose is evaluated by mul-
tiplying the local rotations of joints that precedes it in the
hierarchy, and adding root translation. Thus the variables are
the local rotations (parametrized by Euler angles) and root
translation of the second pose. Except for the root trans-
form, the translation in the other joints is zero since the
bones length is constant. The coupling between the Pro-
crustes problems results from higher-level joints in the skele-
ton inheriting the sequence of transformations of the lower-
level joints, and adding just a rotation to them. The transfor-
mation of the corresponding virtual camera of a joint is then
T−1

j .

This energy is for two sketches (frames), and we now de-
scribe how to work with multiple frames. We start with the
first frame, whose skeleton pose (virtual cameras) is fixed
throughout the process. We incrementally add sketches, one
by one. Each new sketch is optimized independently against
the rest of the sketches, namely, only the joints in this sketch
move relative to the previous sketches. A list of correspon-
dences is made between the current sketch and all other
sketches in both directions (for each pair of sketches, A and
B, we find correspondence from A to B and from B to A), and
transformations describing the movement of the new points
relative to the union of points from all previous poses is com-
puted.

If we allow arbitrary translation and rotation between
cameras, we may obtain undesirable transformations, such
as the trivial identity transformation. To make the process
more robust, we constrain the possible rotations and the root
translation from the “intersection centroid” - defined as the
centroid of the voxels hit by all cameras. We optimize the
energy using the Augmented Lagrangian method [NW06].
This is an off-the-shelf optimizer, which can solve a con-
strained problem, and requires the derivatives of the objec-
tive function and the constraints.

2.4. Perspective Views and Camera Dolly

Our system is not limited to orthographic views, It can han-
dle perspective views as well, which allows to account for

c© 2013 The Author(s)
c© 2013 The Eurographics Association and Blackwell Publishing Ltd.

Zohar Levi & Craig Gotsman / ArtiSketch: A System for Articulated Sketch Modeling

(a) (b)

Figure 4: Camera dolly. (a) Camera B view. The two red points are
voxel centers that were selected to represent the B-rays, and the two
green points are the centers of the voxel representatives of the A-
rays. The angle between each pair of camera rays in the image is
the same. B needs to dolly backward for the B-rays to intersect the
A-rays. (b) In this scene, all the forces except one attract the points
outward, thus B should dolly backward.

variation in the object size between frames using a camera
dolly parameter. Since our scheme uses closest voxels to rep-
resent corresponding rays, in most cases the corresponding
voxels will have the same depth coordinate w.r.t. the cam-
era, and thus cannot express the dolly movement when trans-
forming one voxel to another. We illustrate this point by the
following example, which is illustrated in Fig. 4(a). Con-
sider a scene viewed by two orthogonal perspective cameras
A and B. Both cameras see the same sketch: two points sit-
ting on a vertical line, except that B was initially positioned
closer to the grid than A. Since the cameras are perspective
and B is closer, the two B-rays that hit the two points on the
image plane are enclosed by the two A-rays. The correspon-
dence between the rays would be: (rA

1 ,r
B
1) and (rA

2 ,r
B
2) at

voxels which reside on a vertical line (in reality the closest
point would not reside on a vertical line, but due to voxel
discretization it will). Since the two correspondence pairs
would apply the same force (moving points as a result of
energy minimization, can be viewed as applying force to
the points), the camera optimization, as defined previously,
would leave B in place and would not be able to detect a
dolly backward. To rectify this, we use a specialized univari-
ate optimization to compute a separate dolly parameter.

The optimization proceeds as follows: We find a corre-
spondence between P and Q as described above. P are vox-
els hit by B, the camera that we want to dolly, and Q are the
voxels hit by A that correspond to those in P. We project P
and Q onto B’s image plane. Denote by b the 2D contour of
B’s sketch that the set P projects onto, and denote b’s cen-
troid by c. We compare the forces that attract P to the inside
of b, towards c, to the forces that attract P to the outside.
Define the vectors vi = qi–pi, ui = pi–c. Project vi on ui:

wi =
< ui,vi > ui

||ui||2
, sign(wi) = sign(< ui,vi >) .

If ∑sign(wi)||wi||> 0, we dolly the camera a step backward,
otherwise we dolly it a step forward; see Fig 4(b). We keep
the new camera position only if it reduces the total energy

Eskeleton. We described here a basic line search of a con-
stant step size in the view direction. We perform the dolly
computation step after every few iterations of the ICP-based
algorithm.

3. Surface Reconstruction

Now that we know the parameters of each virtual camera, we
proceed to the problem of rigid object reconstruction from
the 2D contours as seen by these cameras, known as the
shape-from-silhouette problem. We have already mentioned
the visual hull reconstruction method, but the results it gen-
erates are too coarse, and many views are needed to obtain
good results. The coarseness stems from the simplicity of the
algorithm, and its inability to incorporate other energies such
as one that regulates the surface smoothness. Additionally,
the visual hull carving method is sensitive to inaccuracies in
the silhouettes of the object. It would blindly ignore parts of
the object where not all the camera rays intersect. We would
prefer a more sophisticated method that is capable of approx-
imating the object when not all the sketches are consistent.
Common stereo vision methods may be used to solve this
problem, but we require a method that does not depend on
photo-consistent texture for finding the correspondence, and
can cope well with silhouette data alone.

We used a variant of the Level Set Method (LSM), which
takes the Eulerian approach, and progresses a front implic-
itly in a higher dimensional grid. An alternative solution to
this problem, which takes the Lagrangian approach, is the
snake [XP98], which directly manipulates the surface ver-
tices. We chose to use the LSM, since it overcomes some
serious limitations of the snake, such as the need to remesh
the evolving surface in order to preserve density, the in-
ability to cope with topological changes, and the inability
to prevent self-intersections. Also, calculating differential
properties on a snake is less accurate and leads to instabili-
ties in its evolution. We use a LSM that combines variants
of energies used in two popular methods. The first is the
region-based Chan-Vese [CV01], and the second is the edge-
based Geodesic Active Contour (GAC) [CKSS96] using a
GVF [XP98] as an external force. The GAC by itself allows
the user to draw unstructured sketches (containing open con-
tours), while the Chan-Vese requires a simple closed contour
that can be filled to create two separate colored regions. We
found the Chan-Vese energy to be quite robust in the setup
where the sketches are restricted to simple closed contours,
since it indirectly enforces the sketches bi-color photo con-
sistency (background / foreground). In the Appendix we pro-
vide the energy formulation that we used for the LSM.

4. Volume Reduction

The surface obtained by the procedure of the previous sec-
tion, although of a better quality, is still very similar to the
naive visual hull, in the sense that it is still pursuing the max-
imal volume contained in the intersection of the rays. This is

c© 2013 The Author(s)
c© 2013 The Eurographics Association and Blackwell Publishing Ltd.

Zohar Levi & Craig Gotsman / ArtiSketch: A System for Articulated Sketch Modeling

Figure 5: Volume reduction. (Left) On the top is the visual hull of
two perpendicular orthographic cameras viewing circular contours.
The result is an intersection of two cylinders. The bottom is the result
after volume reduction - a sphere. (Middle) Visual hull vs. volume
reduction result for the two heart contours of Fig. 3. (Right) Top
view of the shapes in the middle.

usually not what the user is looking for; see Fig. 5. Thus we
improve the result by finding the shape whose outline fits the
sketches and whose surface minimizes our smoothness en-
ergy (implying a minimal surface). The general approach to
this type of problem is to select rim paths (silhouette points)
on the surface, freeze them, and let the rest of the surface
evolve using mean curvature flow to reach a minimal sur-
face area. Rivers et. al [RDI10] follows the naive approach
of freezing some random silhouette points. But one can eas-
ily see that if these random points happen to fall outside the
minimal surface, the resulting surface would not be minimal
and quite deformed. In the heart example in Fig. 5, if we do
not make a smart selection such as the two contour paths, the
result would be a deformed heart.

To find the rim paths, we use a method based on dynamic
programming, similar to [KSvdP09]. Our cost for a path is
determined by the vertices it passes through. The cost of a
vertex v on the path is

Csilhouette +Cproximity +Cgeodesic +Cbarycenter +Cnormal ,

where we omitted the weighting constants for clarity.

The silhouette cost measures how far v is from being a sil-
houette point: < nv,d >2, where nv is the normal at v, and
d = v− eye, where eye is the camera position.

The proximity cost measures the distance between the ver-
tex projection and a sketch point: ||π(v)− p||2, where π(v)
is the projection of v, and p is the closest sketch point in
image space.

The geodesic cost penalizes long edges on the path since
we strive for a short path: ||v− vprev||2, where vprev is the
vertex preceding v on the path.

The barycenter cost penalizes vertices that are far from
the shape: ||v − c||2, where c is the shape barycenter.
This keeps the paths close to each other with a common
barycenter if possible. This should promote smaller vol-
ume.

The normal cost measures how well the projection of the
normal at v matches the normal to the sketch contour:
−(1+< π(nv),np >)2, where np is the normal at p.

After finding the rim points we trim the rest of the surface.
Rivers et al. [RDI10] use the Lagrangian approach, whose
limitations were discussed in Section 3. We tried an ap-
proach that freezes the voxels where the rim points coincide,
and continue the LSM process with curvature flow alone.
But for thin surfaces, such as the prince’s shoes (Fig. 1),
the anchored rim points degenerated into disconnected “is-
lands”. Another obstacle that both methods face is numerical
instability, which becomes more acute considering our next
requirement: When smoothing a surface we would prefer an
energy similar to the “roundness” preserving Willmore flow,
which requires a fourth degree differential, and is known to
be unstable even for LSM. Therefore instead of the LSM we
adopted the approach of Botsch and Kobbelt [BK04], solv-
ing a bi-Laplacian equation to reconstruct the surface, using
the rim points as anchors:

∆2x = 0 s.t. xi = vi , i ∈ Ianchors (1)

which proved to be more robust.

A few notes on the volume reduction step. In order for
the rim paths detection to be robust, it is necessary for the
initial surface that was produced in the previous section to
have silhouettes that fit the sketches, and to be smooth (cru-
cial for the normal cost). Thus the robust LSM is used, and
alternatives such as a simple initialization of a template mesh
(e.g. a sphere) or simply the visual hull, would not have been
good enough. After the rim paths detection, the only hints
that the bi-Laplacian needs are the surface topology and the
rim points as anchors.

5. Parts Consolidation

If we did not allow the designer the freedom to specify stan-
dalone parts in the sketches, or more specifically, contours
inside the area of the shape (as opposed to curves on the 2D
shape outline only), we could have used one global LSM
step to capture all the parts. But in order to give the user this
extra freedom, we run a LSM step and a volume reduction
step for each rigid part independently. This allows for costs
in the volume reduction step, such as Cnormal , to match be-
tween the 2D sketch and points inside the final shape volume
- points which now sit on the surface of a rigid part that was
constructed independently. As a consequence, the result of
the previous steps is a set of disconnected meshes; see Fig.
6. The gaps between the meshes occur at the skeleton joints,
where the transformation is not strictly rigid anymore. Thus
the cameras may not agree at these places, and the surface is
not reconstructed there. To “stitch” together these parts we
use the following heuristic, which proved to be quite robust:

• Place a sphere at each joint. The sphere radius is taken to
be 60% of the diameter of the surface that envelops the
bone, represented as a line segment between a joint and
its child joint. The diameter is computed as follows. Con-
sider the set of vertices in a sphere of an arbitrary radius,
which are close to a plane that intersects the center of the

c© 2013 The Author(s)
c© 2013 The Eurographics Association and Blackwell Publishing Ltd.

Zohar Levi & Craig Gotsman / ArtiSketch: A System for Articulated Sketch Modeling

Figure 6: Parts consolidation of the Alien model. From left to right:
Independent parts, adding spheres, and the consolidation result.

bone, and has a normal parallel to the bone segment. The
diameter of this set is defined to be the diameter of the sur-
face. In the rare cases that the user wants to improve the
sphere parameters, our system allows the user to manually
“tweak” the spheres.

• Perform boolean union of the spheres with the mesh parts.
• Set as variables all the vertices inside the volume of the

previous spheres. Fix the rest of the surface, and solve a
bi-Laplacian equation for these variables, as in Eq. 1.

To allow for an easier placement of the spheres, such that
they would not overlap unnecessary regions, the user adds
a zero frame, where the skeleton is in a da-Vinci pose (i.e.
extended limbs) without any assigned contours, and on this
pose we perform the consolidation step.

6. Experimental Results

Implementation For the LSM implementation we used
the method of Iwashita et al. [IKTH04]. This method uses
stencils to quickly estimate the tube around the propagating
front. We bound the final mesh to the skeleton for LBS
posing, using Pinocchio [BP07] to define the skin weights.

Performance We ran our experiments with ArtiSketch
on a laptop computer, having an Intel i7 2.2GHz processor
and 8GB RAM. The calibration step between three sketches
takes up to ten seconds. In the reconstruction step, for most
models we used a grid size of 1003 for the LSM. It takes
twenty seconds to propagate a level set to detect a part from
three sketches. The algorithm we used can be parallelized
over the GPU, and adding an initialization step of the level
set to the visual hull, which requires a smaller grid and
less steps to converge, can easily reduce the run-time to
less than five seconds per rigid part. For the consolidation
step, the rim paths detection takes up to ten seconds, and
the smoothing step that involves solving a bi-Laplacian
equation, featuring in both the volume reduction and the
consolidation step, takes up to ten seconds as well.

Experiments Input frames from an animation should
be chosen such that the view directions would be different
as possible, optimally orthogonal; see Fig. 2. Similar to
visual hull algorithms - the more exact input frames the
system has - the more detailed the output will be. But if the

sketches are inconsistent, as in our scenario, adding frames
can make the result worse. Our experiments showed that
approximately three frames sufficed. Thin objects, or very
small parts such as hands, usually can be reconstructed
using only two frames. Some of ArtiSketch’s results can be
seen in Figs. 1, 7-11. The (a) sub-figure shows the contours
traced over the original 2D images, as provided by the
user. The contours are color coded, such that contours in
different frames corresponding to the same joint (same rigid
part) share the same color. Note that not all the joints in a
skeleton need to be assigned to contours in all the frames,
e.g. Fig. 7, and some joints are not assigned at all, and are
used only to forward a transformation to their children,
or as orientation indicators. The (b) sub-figure shows the
skeleton pose for each frame that was passed to the surface
reconstruction step. The (c) sub-figure shows the final
reconstructed mesh with the given contours superimposed.
The (d) sub-figure shows the final model with texture and
small accessories, either in one of the input poses that were
used for the reconstruction or in a novel pose, which was
produced manually by transforming the skeleton joints. As
expected, discrepancies between the contours result in a
surface with an outline that does not match the contours
perfectly, e.g. the red vest of the prince in Fig. 1. In the horse
model in Fig. 7, we tested ArtiSketch on a relatively large
and more complicated shape, the horse torso. As evident in
some of the figures, the outline of the model misses parts
of the contour, implying that the torso should have been
partitioned to smaller and simpler parts, where calibration
should prove easier. The accompanying video demonstrates
the ArtiSketch process and a small animation of sample
results.

7. Conclusion

We have presented ArtiSketch, a system that reconstructs an
articulated 3D object from a few sketches, with the help of
a posed skeleton. ArtiSketch’s main limitation is that the
input sketches must depict piecewise-rigid, as opposed to
soft-body, deformation. The sketches should also obey ba-
sic camera rules, and preserve the proportion of the parts,
so that a skeleton can be fitted. This means that ArtiSketch
will not be able to handle inputs with exaggerated deforma-
tions and unnatural movements between the sketches, such
as cartoon characters that squash and stretch in nonphysi-
cal ways. Still ArtiSketch is an improvement over previous
methods [KSvdP09, RDI10] that can handle only one rigid
part from orthographic views.

As future research, we would like to incorporate symme-
try information, which is present in many real-life shapes.
It would also be interesting to test ArtiSketch on real (e.g.
wildlife) movies, as opposed to synthetic cartoon inputs. For
this purpose an energy term should be added that takes ad-
vantage of the photo-consistency between frames. Then Ar-

c© 2013 The Author(s)
c© 2013 The Eurographics Association and Blackwell Publishing Ltd.

Zohar Levi & Craig Gotsman / ArtiSketch: A System for Articulated Sketch Modeling

(a) (b) (c) (d)

Figure 7: Horse.

(a) (b) (c) (d)

Figure 8: Dancer legs

(a) (b) (c) (d)

Figure 9: Spiderman

(a) (b) (c) (d)

Figure 10: Alien

(a) (b) (c) (d)

Figure 11: Ballet dancer

c© 2013 The Author(s)
c© 2013 The Eurographics Association and Blackwell Publishing Ltd.

Zohar Levi & Craig Gotsman / ArtiSketch: A System for Articulated Sketch Modeling

tiSketch should texture the final mesh based on the input
frames.

References

[BJD∗12] BOROSÁN P., JIN M., DECARLO D., GINGOLD Y.,
NEALEN A.: Rigmesh: automatic rigging for part-based shape
modeling and deformation. ACM Trans. Graph. (2012).

[BK04] BOTSCH M., KOBBELT L.: An intuitive framework for
real-time freeform modeling. In SIGGRAPH (2004).

[BM92] BESL P. J., MCKAY N. D.: A method for registration of
3D shapes. IEEE Trans. PAMI 14, 2 (1992), 239–256.

[BP07] BARAN I., POPOVIC J.: Automatic rigging and animation
of 3D characters. ACM Trans. on Graph. 26, 3 (2007), 72.

[CF12] CASHMAN T. J., FITZGIBBON A. W.: What shape are
dolphins? Building 3D morphable models from 2D images. IEEE
Trans. PAMI 99, PrePrints (2012).

[CKSS96] CASELLES V., KIMMEL R., SAPIRO G., SBERT C.:
3D active contours. Lecture Notes in Control and Information
Sciences 219 (1996), 43–49.

[CV01] CHAN T. F., VESE L. A.: Active contours without edges.
IEEE Image Processing 10, 2 (2001), 266–277.

[EBBN05] EROL A., BEBIS G., BOYLE R. D., NICOLESCU M.:
Visual hull construction using adaptive sampling. In Proc. IEEE
Workshops on App. of Comp. Vision (2005), pp. 234–241.

[FK99] FAUGERAS O., KERIVEN R.: Variational principles, sur-
face evolution, PDE’s, level set methods and the stereo problem.
IEEE Trans. on Image Processing 7 (1999), 336–344.

[FSPK04] FURUKAWA Y., SETHI A., PONCE J., KRIEGMAN D.:
Structure and motion from images of smooth textureless objects.
In ECCV (2004), pp. 287–298.

[HSC07] HERNANDEZ C., SCHMITT F., CIPOLLA R.: Silhouette
coherence for camera calibration under circular motion. IEEE
Trans. PAMI 29 (2007), 343–349.

[IKTH04] IWASHITA Y., KURAZUME R., TSUJI T., HASEGAWA
T.: Fast implementation of level set method and its realtime ap-
plications. In Sys., Man and Cyber. (2004).

[Ker02] KERIVEN R.: A variational framework for shape from
contours. Tech. rep., Ecole Nationale des Ponts et Chaussees,
CERMICS, France, 2002.

[KH06] KARPENKO O. A., HUGHES J. F.: SmoothSketch: 3D
free-form shapes from complex sketches. ACM Transactions on
Graphics 25, 3 (2006), 589–598.

[KSvdP09] KRAEVOY V., SHEFFER A., VAN DE PANNE M.:
Modeling from contour drawings. In Proc. Eurographics Sym.
on Sketch-Based Inter. and Modeling (2009), pp. 37–44.

[NISA07] NEALEN A., IGARASHI T., SORKINE O., ALEXA M.:
Fibermesh: designing freeform surfaces with 3D curves. ACM
Trans. Graph. 26, 3 (2007), 41.

[NW06] NOCEDAL J., WRIGHT S.: Numerical optimization.
Springer, 2006.

[OSSJ09] OLSEN L., SAMAVATI F. F., SOUSA M. C., JORGE
J. A.: Sketch-based modeling: A survey. Comp. Graph. (2009).

[RDI10] RIVERS A., DURAND F., IGARASHI T.: 3D modeling
with silhouettes. In SIGGRAPH (2010), pp. 109:1–109:8.

[SKSK09] SCHMIDT R., KHAN A., SINGH K., KURTENBACH
G.: Analytic drawing of 3D scaffolds. In SIGGRAPH Asia
(2009), pp. 149:1–149:10.

[SPM04] SINHA S. N., POLLEFEYS M., MCMILLAN L.: Cam-
era network calibration from dynamic silhouettes. IEEE Comp.
Vis. and Pattern Recognition 1 (2004), 195–202.

[TJ87] THOMAS F., JOHNSTON O.: Disney Animation: The Illu-
sion of Life. Abbeville Press, 1987.

[VBMP08] VLASIC D., BARAN I., MATUSIK W., POPOVIĆ J.:
Articulated mesh animation from multi-view silhouettes. In SIG-
GRAPH (2008), pp. 97:1–97:9.

[WC04] WONG K.-Y. K., CIPOLLA R.: Reconstruction of sculp-
ture from its profiles with unknown camera positions. IEEE
Trans. on Image Processing 13 (2004), 381–389.

[XP98] XU C., PRINCE J. L.: Snakes, shapes, and gradient vector
flow. IEEE Trans. on Image Processing 7, 3 (1998), 359–369.

[XZZ∗11] XU K., ZHENG H., ZHANG H., COHEN-OR D., LIU
L., XIONG Y.: Photo-inspired model-driven 3d object modeling.
In SIGGRAPH (2011), pp. 80:1–80:10.

8. Appendix: LSM Formulation

The energy of a geodesic active surface [CKSS96] for cap-
turing the edges of an intensity field I defined on a 3D sur-
face S is

E(S) =
ˆ ˆ

S
g(|∇I|)da, g(t) =

1
1+ t p

where p is a constant scalar. To minimize this energy, its
Euler-Lagrange equation, which results in a surface evolu-
tion, is St = g(H)n−〈∇g,n〉n, where n is the surface nor-
mal, and H is twice the mean curvature of S. The resulting
LSM formulation is

φt = div(g
∇φ

|∇φ|)|∇φ|

where S is the zero level set of φ. We will now formulate the
case of evolving a surface using its apparent contour as an
external force inside a 2D image I [Ker02, FK99]:

Eedge(S) =
ˆ ˆ

S
h(S)g(|∇I(π(S))|)da

π is the camera projection, and h is a smooth indicator func-
tion that tests if a point is a silhouette. In a similar way we
formulate an evolving surface using its apparent contour and
the region-based Chan-Vese energy:

Eregion(S) =

ˆ ˆ
S
[ĥ(π(S))(I(π(S))− c1)

2

+(1− ĥ(π(S)))(I(π(S))− c2)
2]da

for colors c1 inside the contour and c2 for the background;
ĥ is a smooth function indicating whether the point is inside
the region enclosed by the contour. The LSM formulation is

φt = I(π(S))− c2)
2− I(π(S))− c1)

2 .

The edge-based and the region-based formulations are com-
bined using a weighting constant.

c© 2013 The Author(s)
c© 2013 The Eurographics Association and Blackwell Publishing Ltd.

