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Smooth Rotation Enhanced
As-Rigid-As-Possible Mesh Animation

Zohar Levi and Craig Gotsman

Abstract—In recent years, the As-Rigid-As-Possible (ARAP) shape deformation and shape interpolation techniques gained popularity,
and the ARAP energy was successfully used in other applications as well. We improve the ARAP animation technique in two aspects.
First, we introduce a new ARAP-type energy, named SR-ARAP, which has a consistent discretization for surfaces (triangle meshes).
The quality of our new surface deformation scheme competes with the quality of the volumetric ARAP deformation (for tetrahedral
meshes). Second, we propose a new ARAP shape interpolation method that is superior to prior art also based on the ARAP energy.
This method is compatible with our new SR-ARAP energy, as well as with the ARAP volume energy.

Index Terms—As-Rigid-As-Possible (ARAP), shape deformation, shape interpolation

1 INTRODUCTION

To animate a 3D mesh, a modeler typically uses a
mesh deformation tool to create new poses and a shape
interpolation tool to generate the frames between the
poses. A shape interpolation tool is also useful in other
applications such as example-based deformation [4], [5],
or morphing sequence generation by interpolation of
two different meshes having a common topology [6].
While Linear Blending Skin (LBS) is the most popu-
lar animation technique, it suffers from a number of
drawbacks. The main ones are the low quality of the
deformation in terms of local shape preservation near
joints (e.g. the well known “candy-wrapper” effect); the
tedious task of painting the skin weights; and the need
to bind a skeleton, which limits the deformation to
articulated motion, thus preventing its use for intuitive
freeform deformation. Many alternatives to LBS have
been proposed, and in terms of user interface, the most
convenient ones let the user manipulate handle points,
and the rest of the mesh is automatically deformed in a
natural way. Afterwards, a shape interpolation method
is applied to create a natural animation between poses.
The methods in [7], [2], [3] introduced an animation
technique based on minimizing the so-called As-Rigid-
As-Possible (ARAP) energy. The ARAP energy measures
the local deviation of the differential of a mapping
between two shapes from rigidity, shown to be ad-
vantageous for detail preservation and intuitive elastic
behavior. The attractiveness of ARAP methods is in
the simplicity of their formulation (built upon classical
Laplacian mesh editing techniques), and not requiring
any additional accessories or constructions. These lead
to an easy implementation, while producing compelling
results (at least for the volumetric case, as discussed
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later on). Another feature of the ARAP energy is its
ability to be easily converted to As-Similar-As-Possible
energy, which produces, for example, a quasi-conformal
mapping [8], [9]. Thus, it is not surprising that the ARAP
energy became popular and has been used successfully
in other applications such as parametrization [9], image
registration [10], [11], shape decomposition [12], cage-
based deformation [13], image warping [14], [15], and
video stabilization [16]. Like many surface variational
deformation methods, one drawback of the ARAP defor-
mation method is performance; only coarse meshes can
be deformed at interactive rates. One popular solution
is using a hierarchical-based approach [17].

Given two meshes P and () consisting of vertices p;
and ¢; respectively, and directed edges p;; (= p; — p:)
and g;;, the discrete ARAP energy is defined as:

E(P,Q) = min Y cirlla — Repisl* . Q)
D1 ReesO@)  S=
where Ry,...,R,, € SO(3) are optimal local rotations;

&1, ...,En are their corresponding edge sets, typically
the edges of a triangle, a tetrahedron, or a vertex 1-
ring (see Fig. 2); and c¢;;; are weighting coefficients,
typically uniform or the familiar cotan weights. In the
shape deformation setup, deforming a mesh P involves
fixing handle points and solving for the rest of the
¢; by minimizing (1). The intuition for minimizing the
ARAP energy is to find a mesh @ that is locally a rigid
transformation of the source mesh P. More specifically,
the differential of a mapping from an edge set in P to
a corresponding edge set in ) should be optimally a
rotation, thus synchronizing corresponding edge vectors
of the two edge sets. For example, if the positional con-
straints allow for @) to be a global rigid transformation
of P, then all the R, would be equal, and the energy
would be zero.

While previous applications in 3D used the discrete
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Figure 1: Survey cylinder deformation; from left to right: source, PriMo [1], ARAP surface [2], ARAP volume [3],
ARAP volume applied to a tetrahedral stratum, ARAP surface with additional term for a smooth map differential,
our SR-ARAP. Goblin’s arm deformation; from left to right: Source, LBS with default Autodesk Maya weights,
ARAP surface, ARAP volume, SR-ARAP. The yellow regions are handle constraints.

ARAP energy with, somewhat, arbitrary weights c;jx,
Chao et al. [3] derive the discrete ARAP energy in (1)
from the continuous energy of a smooth map between
two manifolds f: P — Q:

i df — R||? 2
PREHSpOn@)IIf Iz (2)

E(f) =

which results in cotan weights (that include an edge
length factor for tetrahedra [3], [18]). This discretization
is consistent (under appropriate refinement conditions
and in appropriate norms), which is an essential re-
quirement for a well-behaved method [19]. It exhibits
a parametrization invariance behavior (e.g. reasonable
consistency of shape deformation results for different
discretizations, which is particularly useful in the case
of a poor triangulation that has large variation in the
size of the triangles), and convergence to the continuous
case as the mesh is refined. Unfortunately, while the
discretization of [3] is applicable for the volumetric case,
where tetrahedral edge sets are used, it is not applicable
for the surface case with 1-ring edge sets as in [2]. An
effort has been made to address the surface case, and it
has been argued in [3] that if 1-ring edge sets are used in
the discrete surface scheme in [2], then the discretization
can be derived from a new proposed continuous energy.
No details were provided for how the derivation is done,
and defining the radius of integration (r in their formula)
is still an open problem. Thus, despite the popularity of
the ARAP energy, so far there has been no consistent
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Figure 2: Typical edge sets: (a) triangle, (b) tetrahedron,
(c) spokes, (d) spokes and rim (1-ring).

Typical neighboring edge sets of an edge set &: (a) three
triangles sharing an edge with &, (b) four tetrahedra
sharing a face with &, (c-d) edge sets of the 1-ring vertex
neighbors of the central vertex in &, (where an edge set
is associated with its central vertex).

discretization for surfaces. We introduce a new ARAP-
type energy, named SR-ARAP (ARAP with smooth ro-
tations), which provides a consistent discretization for
surfaces. The new energy is used for surface deformation
that produces results with quality that competes with
the volume deformation. We also propose a new ARAP
shape interpolation scheme that is compatible with the
SR-ARAP energy and with the ARAP volume energy,
and improves the capabilities of previous ARAP shape
interpolation methods.

1.1 Further Motivation

As further motivation for our new energy, we will note
more drawbacks of previous ARAP deformation meth-
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ods. As explained in the previous section, the ARAP
surface deformation [2] is not a result of a consistent
discretization. Moreover, Fig. 1 demonstrates additional
problems with this scheme. The same problems that
occur in a bending of a cylinder could also occur, e.g.,
at a joint in a more complex shape. The drawback of the
ARAP surface deformation is that it aims at preserving
the surface and ignores the volume, and consequently
may introduce a squash in the deformed result. The
ARAP volume deformation, on the other hand, results in
a nice round shape, although not as rounded as PriMo
due to a sensitivity to our particular tetrahedralization
(see implementation notes in Section 4). The main disad-
vantage of the ARAP volume deformation is that it re-
quires a tetrahedral mesh. Unlike the ubiquitous triangle
mesh, tetrahedral mesh structures are not supported in
most of the popular modeling software systems. Another
restriction is that algorithms to construct a tetrahedral
volume mesh from the interior of a triangle surface mesh
require that the triangle mesh be a clean, water-tight, and
non-self-intersecting surface. Furthermore, the tetrahe-
dralization process generally introduces additional ver-
tices, but even without them, the number of tetrahedral
edge sets is larger than the number of 1-ring edge sets in
the surface case, which directly influences the algorithm
complexity. To emphasize the difficulty of the problem
at hand (improving the quality of the ARAP surface
deformation), we will iterate a few simple solutions that
might come to mind, and explain why they do not work:

e Use a construction simpler than a complete tetra-
hedralization of the volume, e.g. a stratum of tetra-
hedra: Given a triangle mesh, for each pair of trian-
gles sharing an edge, create a tetrahedron from the
union of the triangle vertices. However, applying
the ARAP volume deformation to the stratum re-
sults in a cramped surface similar to the squashed
results of the surface case; see Fig. 1.

e A smooth map differential. Add to the ARAP
surface energy a term that penalizes the difference
between the map differential of an edge set and the
map differential of its neighboring edge sets:

Esmooth(Pv Q) =

min Y cillai; — Repijl®
fm1 eSO (e,
+ Y wulldfs = dfil7 ®)
EIEN (Ek)

where N () are the neighboring edge sets of &,
wy are scalar weights, and df; is the differential
of the mapping from the edge set & in P to the
corresponding edge set in (); a detailed definition of
the differential of a mapping is given in Section 3.
Fig. 1 shows the resulting surface of the smooth map
differential energy (minimized w.r.t. ()) that exhibits
extreme volume loss.

e Add a smoothing term for the surface itself, as
done in surface fairing methods, e.g. adding a term
based on the bi-Laplacian. The problem with this
solution is that such a term would smooth out
surface details.

e Use a larger edge set, such as a 2-ring. This does
not have much impact on the resulting mesh. Taking
a very large neighborhood may help the situation,
but at impractical cost of memory and performance.

The last image in Fig. 1 shows a surface deformation
based on our SR-ARAP energy.

1.2 Related Work

Since our application is a pure 3D mesh-based
animation, we will review related methods in shape
deformation and interpolation.

Deformation  See [20] for a survey on surface defor-
mation methods. The leading method described in this
survey, in terms of quality, is PriMo [1]. PriMo emulates
physically plausible surface behavior inspired by thin
shells and plates. Nevertheless, the scheme, like many
other direct deformation methods, is not a consistent dis-
cretization of a continuous energy. The implementation
involves a construction of a layer of volumetric prisms,
which are coupled through non-linear elastic forces.
Most surface deformation methods are based on non-
linear energy and rely on an iterative solver. Thus they
are typically too expensive for interactive manipulation
of high resolution models, and usually multiresolution
is employed. Discrete Shells [21] model describes the
behavior of thin flexible structures, where the energy is
based on edge lengths and dihedral angles. Two versions
of discretization are given: One that depends on the
geometry only, and is triangulation invariant. The other
is a discretization that converges to its continuous equiv-
alent under refinement. It has been noted that there is
no discretization that satisfies both properties. Pyramid
coordinates [22] are a natural non-linear local representa-
tion of vertex positions, which is used for deformation.
Linear rotation invariant (LRI) coordinates [23] offer a
similar idea based on local frames, and the method is one
of the few Laplacian-based deformation methods that
can handle large rotations and run at interactive rates.
However it does not cope well with situations where
the handles undergo translation only. The reconstruction
of the deformed mesh requires solving only two sparse
linear systems that arise from discrete forms, but the
method possibly requires more iterations to compete
with the quality of state-of-the-art methods. Another
method that is motivated by Cartan’s moving frame is
suggested in [24]. The method encodes the discrete first
fundamental form at the local frame of a vertex, which
is preserved through enforcing frames to be orthogonal.
Also, it encodes the discrete second fundamental form as
differences between the local frames in terms of quater-
nions. [25] performs constrained mesh deformation tasks
with gradient domain techniques.
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Sorkine et al. [2] propose a surface deformation
based on the ARAP energy. Chao et al. [3] derive a
similar ARAP formulation from the continuous case
for volume deformation. [26], [8] base their ARAP
deformation scheme on the Moving Least Squares
(MLS) approach. Borosan et al. [13] introduce a hybrid
approach that couples a surface deformation with a
cage-based deformation. The user can perform edits
on an automatically-generated simplified version of an
input shape using ARAP surface modeling. The edit
is propagated to the original shape by a precomputed
space deformation based on Mean Value Coordinates.
Manson et al. [17] build a low-resolution representation
of a mesh by using edge collapses, and perform an
ARAP deformation on the simplified mesh. Then details
are added back by reversing edge-collapses, so that the
shape of the mesh is locally preserved. While adding
details, the mesh is deformed to match the predicted
positions of constraints, so that constraints on the full-
resolution mesh are met. Zollhofer et al. [27] present
a novel lattice-based mesh editing that decouples
the runtime complexity from the mesh geometric
complexity. Its non-linear optimization minimizes an
ARAP energy and is implemented as a data-parallel
multi-resolution on the GPU, which allows to pose
meshes consisting of millions of triangles in real-time.
Jacobson et al. [28] offer a variant of Linear Blend
Skinning (LBS) controlled by disconnected skeletons.
The clustering of vertices is based on their distance
in weight space, and the cluster transformations are
optimized using the ARAP energy.

Shape Interpolation ARAP shape interpolation
was introduced in [7]. The mapping differential for
a tetrahedron is factorized using polar decomposition
into rotation and stretching. The rotation is interpo-
lated using Slerp (Spherical Linear Interpolation), and
the stretching component is linearly interpolated. Baxter
et al. [29] pointed out a drawback in using Slerp for
interpolating rotations larger than 180 degrees, due to
the Slerp selection of the shortest path. Their solution
in 2D was to propagate the rotation phases using FFT.
Winkler et al. [30] observed that it would be difficult to
extend this method to 3D, where more than one rotation
axis is involved, and instead proposed a hierarchical
approach that interpolates edge lengths and dihedral
angles. Frohlich et al. [5] note that the method in [30]
is based on an energy similar to Discrete Shells [21], and
using a similar approach, they add a volume interpola-
tion term to the energy, and describe an efficient way
to optimize it. Liu et al. [31] present a surface morphing
method based on ARAP; the method cannot handle large
rotations. Heeren et al. [32] offer a computational model
for geodesics in the space of thin shells. They incorporate
bending contributions into the deformation energy on
top of membrane distortion terms in order to obtain
a physically sound notion of distance between shells.
Huang et al. [33] introduce an interactive approach to

generate physically-based shape interpolation between
poses, by extending linear modal analysis. Pyramid
coordinates [22], besides giving a shape deformation
scheme, also offer a shape interpolation scheme, which
was the first to handle large rotations. [34] formulates
the trajectory problem of shape interpolation as solving
Poisson equations. LRI [23] also can be used for shape
interpolation. Kircher et al.’s relative blending [35] is
similar to LRI, but the local frames are not orthonormal,
and are defined on mesh faces instead of vertices. Baran
et al. [36] extend LRI to contiguous disjoint patches.
Chao et al. [3] propose a shape interpolation technique
based on minimizing the ARAP energy, and compare
their approach to interpolation in shape space [37]. The
latter defines a Riemannian metric that penalizes non-
isometric deformations, and search for geodesic paths
in the resulting shape space. Gao et al. [38] propose
a data-driven approach for shape morphing, based on
clustering models from the same category in shape
space. Huang et al. [39] offer a non-rigid shape reg-
istration method. Its underlying mechanism is based
on a deformation similar to MLS, where the edge sets
are clusters of vertices that go through a similar rigid
transformation. A shape interpolation based on this
mechanism is offered as well. The advantage of more
recent methods is that they solve for the best rotations
instead of interpolating or propagating given rotations.

1.3 Contribution

In this work, we introduce a new ARAP-type energy,
which results in consistent discretization for surfaces,
and further improves the quality of the surface defor-
mation. Additionally, we propose a new ARAP shape
interpolation scheme, which has better performance and
extrapolation capabilities, and is compatible with both
SR-ARAP energy and ARAP volume energy. Our con-
tribution is magnified by the popularity of the ARAP
energy in various applications.

1.4 Problem Summary

Before diving into the technical details, we summarize
the problems to be addressed in this paper. In our surface
deformation and interpolation scheme, we would like
to achieve a volumetric deformation effect. This effect
resolves or ameliorates shrinkage or collapse artifacts
that previous methods are prone to; for example, see Fig.
1. To achieve that, our scheme includes a bending term,
which we formulate in a way that can be consistently
discretized as detailed in Section 2.2. The importance of
a consistent discretization can be seen in our results in
Figures 14, 15, and 16, which are compared to state-of-
the-art methods that lack it, and thus show artifacts on
non-uniform meshes.
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2 DEFORMATION
2.1 SR-ARAP Energy

Our SR-ARAP energy for a smooth map between two
2-manifolds f: P — Q is

min _([|df — RI% +aA|dRIE) . @)

E =
sr(f) = RESO(3)

The first term in the integral is a membrane energy
as in (2), and the second term is a bending energy
that penalizes the difference between rotations. aA is
a weighting scalar, where A is the area of the whole
surface. A was added to make the energy invariant to
global scaling of P (the differential of the mapping does
not change. But dR measure the difference between the
same values over a larger area, so if P is scaled by s, the
gradient is scaled by s~2). Normally, the differential of a
mapping of a 2-manifold is a 2 x 2 matrix, which maps
tangent vectors from the parametric domain to a tangent
plane at a surface point. Here, df is a 3 x 3 matrix, which
maps the 3D embedding of the tangent vectors from one
surface to another (which is simply the Jacobian matrix
of f:R3 — R3). Our discretization is

m

Esr(P,Q) = i ikl gis — Ripis|?
sr(P, Q) Rl,‘--ygi%SO(S)I;((A%S Cijke || i kPij |
= 1,3 k

+aA Y ww| Ry — Rill7) ()
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where Ri,...,R, € SO(3) are optimal local rotations
associated with the edge sets; N'(€}) are the neighboring
edge sets of &;; wy; are scalar weights; and A is the
triangle mesh area, which is used to make the energy
scale invariant (scaling the edges by s, would scale
the first term by s, which is the scale of A in the
second term). The first term, the membrane energy, is
similar to the discretization in (1), and the second term,
the bending energy, penalizes the difference between
an edge set rotation and the rotations of neighboring
edge sets. The objective of the membrane term is to
lower the distortion of an edge set (resist stretching and
shearing), by keeping the map differential close to rigid.
The objective of the bending term is to keep the variation
in the rotations in an edge set neighborhood low, such
that the neighborhood would transform as a unit, as
much as possible.

In the ARAP surface deformation, an overlap of the
cells is required in order to avoid surface stretching or
shearing at the boundary of the cells, and a 1-ring edge
set (Fig. 2¢, 2d) is typically used [2]. Therefore, the ARAP
surface deformation cannot cope with triangle edge sets
(Fig. 2a), since there is nothing that accounts for the
preservation of dihedral angles. For example, a mesh P
that consists of two triangles with some dihedral angle
between them, and a mesh () that consists of the same
two triangles, but with a different dihedral angle, would
have a zero ARAP surface energy (optimal deformation)
when using triangle edge sets. On the other hand, our

new SR-ARAP energy works well with triangle edge
sets. This is because our energy prefers to rotate a trian-
gle face and its neighbors with the same rotation (due to
the low variation in rotations term), thus preserving the
neighborhood shape. The bending term in (5) consists
of the rotational part of the differential of the maps in
the second term in (3). Comparing the second terms in
(3) and (5), we conclude that (5) allows for independent
stretching of the edge sets, thus putting more emphasis
on the preservation of the dihedral angles, which leads
to a better preservation of the local shape. We should
note that the bending term is not pure bending due
to geometric rigidity [40] (which intuitively states that
two neighboring triangles cannot have purely different
rotations without tearing the common edge apart).

2.2 Discretization Consistency

When discussing consistency, we do not refer to a point-
wise convergence, but rather to the consistency defined
by the respective approaches that are used to discretize
the Laplace-Beltrami operator (and thus, the consistency
is subjugated to the appropriate refinement conditions
in the appropriate norms). For example, using the Finite
Element Method (FEM), the convergence is in the weak
sense (in the L?-norm). We will now show that for the
right choice of weights and triangle neighborhood, (5)
is a consistent discretization of (4). While it is possible
to use the SR-ARAP energy with 1-ring edge sets, as
discussed in Section 4, for a consistent discretization we
will consider triangle edge sets. Following [3], a con-
sistent discretization of the membrane term is achieved
using cotan weights for ¢;;,. In fact, Pinkall et al. [41]
address the discretization of a similar energy (Dirichlet
energy) for the surface case. Minimizing the energy of
the first term (with R fixed) results in a Poisson equation,
which involves discretization of the Laplace-Beltrami
operator. FEM and Discrete Exterior Calculus (DEC) are
two popular techniques that are used to consistently
discretize the Laplace-Beltrami operator, and they both
result in the same discretization [42], [43], [44].

While the discrete variables of the membrane term are
associated with the mesh vertices, the discrete variables
of the bending term are associated with the mesh faces.
A consistent discretization of the bending term, which is
a Dirichlet energy w.r.t. the rotations, is then derived by
applying a discrete Laplace operator to the faces (using
typical triangle neighborhood for connectivity; see Fig.
2), where the values on the faces are the rotations. This
discrete Laplace operator results in the weighted sum
of the neighborhood rotations such as in (6), and the
weights wy; may be chosen to satisfy some properties,
such as the linearity property or the convergence prop-
erty (the convergence property of a differential operator
implies consistency and stability) [44]. We will suggest
three ways to discretize the Laplace-Beltrami operator
for values associated with the mesh faces.

The first approach is to consider the barycentric dual
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mesh, whose vertices are at the barycenters of the tri-
angle faces of the primal mesh (the values associated
with the primal mesh faces are associated with the
dual mesh vertices), and it is triangulated, such that
we get a simplicial complex [45]. Then, the standard
consistent discrete cotan-Laplace operator (for vertices)
[18] is employed (treating the dual mesh as a primal
mesh). In terms of wy;, the triangulation of the dual
mesh induces a neighborhood for the triangle faces in
the primal mesh, and wy; are the cotan weights (of the
dual mesh triangulation). We assume that the refinement
of the primal mesh is well behaved, in the sense that the
dual mesh has normal convergence to the continuous
surface.

The second approach is also based on the barycentric
dual mesh, but instead of triangulating it, we use the
discrete Laplacian for general meshes [46] to derive the
weights.

The third approach is to consider the circumcentric
dual mesh, whose vertices are in the circumcenters of the
triangle faces of the primal mesh. If the dual mesh is not
well-centered (a vertex of the circumcentric dual mesh
is not necessarily inside the associated primal face), then
the dual mesh is not necessarily a simplicial complex,
and its embedding in 3D may result in edges that are
not straight. This, though, is not an obstacle for deriving
a discrete Laplace-Beltrami operator. In the context of
the DEC approach, when deriving the quantities for
the discrete Hodge star, we consider the intrinsic dual
mesh (mapping each pair of triangles isometrically to
a 2D plane), which need not be well-centered [45]. We
know that the weights for the discrete Laplace-Beltrami
operator for the primal mesh are the ratio of the intrinsic
dual edge length to the primal edge length. For the dual
mesh, this ratio simply inverts. An explicit derivation of
the inverse cotan weights is given in the Appendix.

In our experiments, the third approach did not per-
form well, and the first and second approaches per-
formed without noticeable difference.

2.2.1 Rotations and the Frobenius Norm

Using the Frobenius norm to measure the difference
between two rotation matrices in the bending term en-
abled us to easily derive a proper discretization. But
further motivation should be given for this choice, since
SO(3) is not closed under addition. Consider the rotation
difference in the bending term

|Rx — Ry||% = 2tr(I — RF Ry) = 6 — 2tr(R] Ry,)

Define the rotation matrix R = RlTRk. R can be repre-
sented by a rotation axis and an angle 6. It is known
that

tr(R) =14 2cost .

Thus, the Frobenius norm measures the rotation angle
of the composition of a rotation matrix and a second
rotation matrix inverse, and its minimization favors a
zero rotation angle (identity matrix).

2.3 Optimization

To minimize our energy in (5) w.rt. ¢; we employ the
alternating local/global method from [2]. This is an
efficient iterative method, where each iteration consists
of a local step followed by a global step.

Local Step  In the local step, the ¢; are fixed, and the
local rotations are optimized. Following [2], we solve for
an optimal rotation Rj; independently (fixing the other
rotations). Dropping the terms in (5) that do not contain
Ry, we get:

argmin ( Z cijkllai; — Repijl®
RieSO(3) (i,5)EER

JrQOzA Z wi || Ri — RIH%)

EzeN(Sk)
Z ngkngq”
(4,5)EEK

+4C¥A Z wklRlT))
EEN (Ek)

= argmax tr(RgSk) (6)
RieSO(3)

= argmin tr(—
R,eSO(3)

(in the bending term, the contribution is once from &,
and once from its neighbor) where S}, is defined as

S =2 Z cijkpijqiTj +4aA Z wklRlT ,
(,7)€E E1EN (Er)
and defining its SVD as S, = UpX;V,! results in the
optimal Ry = V;UT, since

tr(RpSy) = tr(Vi UL Up S ViE) = tr(IS4)

is the maximum value, due to the identity matrix [
being the orthonormal matrix with the maximal values
on the diagonal. The difference from [2] is the added
weighted sum of the rotations of the edge set neighbors
to the covariance matrix in Sj.

Global Step In the global step the rotations are
fixed, and we differentiate the energy in (5) w.r.t. the
vertices. The derivative w.r.t. ¢;:

0q;
0q; Z Z Czjk( qﬂ) (¢ij — Ripij)

k=1 (i,5)€&
where
—1I =1
dqy 3x3 -
o I3z j=1
0343 else

which results in a linear Poisson system LQ = b (L is
the discrete Laplace-Beltrami operator). The positional
constraints are incorporated into the system as usual
(adding rows and columns of Lagrange multipliers, or
eliminating rows and columns to get a positive-definite
matrix). In a precomputation step, L is factorized, and
solving the linear Poisson system amounts to a back
substitution.
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3 SHAPE INTERPOLATION

We start by introducing a new shape interpolation tech-
nique for tetrahedral meshes, and then we introduce a
new shape interpolation technique for triangle meshes
based on our SR-ARAP energy.

3.1 Tetrahedral Mesh

Eq. (1) can also be written in terms of the differential
of the mapping f : P — @, where P, () are tetrahe-
dral meshes [3]. For example, using cotan weights (that
include the edge length factor) [3], [18]) for ¢;;x:

E(P,Q) = in Ay — Ryl? 7
(P,Q) ;ng}slg(g) elldfe — Rill% ()

where df;, = QP "' is the differential of the mapping
from the kth tetrahedron in P to the kth tetrahedron
in Q; Pr, Qr are 3 x 3 matrices whose columns are
the vectors of three edges emanating from an arbitrary
vertex in the kth tetrahedron in each of the meshes
respectively (e.g. Po = [po1|pozlpos]); and Ay is the
volume of the kth tetrahedron (for the general case, the
vectors of the edges, which comprise the columns of
the matrices, can be multiplied by weights to implement
any arbitrary weighting in (1)). Chao et al. [3] propose
a simple interpolation scheme that solves for a mesh M,
at time ¢ by minimizing a convex combination of two
energy terms

Espring(MOaMlat) = (1 - t)E(MOaMt) + tE(M17Mt) )

where My, M, are the given meshes at times ¢t = 0,1
to interpolate between. The minimization is performed
using an optimization scheme similar to that in the
deformation method. While this interpolation scheme
solves the problem of sensitivity to large rotations in a
straightforward manner, it has two drawbacks. The first
drawback is that the shapes cannot be extrapolated in
at least one of the time segments ¢ < 0 or ¢ > 1. This is
because in one of the time segments, the coefficient of
the larger energy term is negative, and the total optimal
energy would be negative infinity. The second drawback
is that the cost of interpolating between two shapes is
approximately twice the cost of a shape deformation
process based on the same energy in (7). This is due
to the optimization complexity being dominated by the
SVD (or a cheaper polar decomposition [28]) calculation
in the local step, which is performed twice in the shape
interpolation compared to the deformation. In the gen-
eral case, when interpolating between s meshes (e.g. as
done in example-based deformation), we need to solve
in the local step s - m SVDs, compared to only m in the
deformation.

We propose a new method that resolves both prob-
lems. Our method takes a more direct approach: We
explicitly prescribe the stretching component, and then
solve for the best rotations. Let f, : Mo — My (identity),
fi: My = M; be the mappings between corresponding

edge sets in the meshes, and dfor = RorYor, dfix =
R11Y1, be the respective polar decompositions of their
mapping differentials for the kth tetrahedron. We define
the interpolation at time ¢ of the stretching part as

Yi = (1—-1)Yor +tY1x . (8)

Using the local/global scheme we solve for the vertices
of an intermediate shape M; by minimizing

m

B(Mo, My, t) = > | min  Adlldfi — RuYel:
k=1""

m
=>" min Y cipllay — ReYirdy |
£ RxeSO(3) (572t
m
= min Z CiijQij —Rkﬁ%HQ ) )
jm1 Tr€SOE) (i,5)€E

where dfj; is the differential of the mapping f : My — M;
on the kth tetrahedron as in (7); Ay is the volume of
the kth tetrahedron in Mj; p?j, gi; are the edges of
My, M, respectively; and c;;, are the cotan weights
(with the edge length factor). Eq. (9) is the result of
incorporating the interpolation of stretching part in the
ARAP energy, and it provides further intuition: Solving
for an intermediate shape is tantamount to deforming
a stretched source mesh M, (with edges Py = Yeply);
compare Eq. (9) with Eq. (1). It can be proven for a
mesh consisting of a single tetrahedron that the resulting
mesh M; would be identical (up to a rigid transfor-
mation) for our method and the method in [3], and in
our experiments with meshes of several tetrahedra the
difference between the results was imperceptible. The
complexity of generating M; with our method is the
same as the ARAP volume deformation complexity, and
since our energy is always non-negative, it can be safely
extrapolated to any arbitrary time.

3.2 Triangle Mesh

In Section 1.1 we discussed why working with a triangle
mesh is more practical than working with a tetrahe-
dral mesh. When attempting shape interpolation in the
context of morphing between two different shapes, the
advantage of triangle meshes is amplified, due to the
difficulty off constructing a compatible tetrahedraliza-
tion between two meshes. One of the obstacles is that
the bijectivity of the mapping between the constructed
meshes cannot be guaranteed. While the method in [3]
can be used with the ARAP surface energy (with the
limitations discussed before), it cannot be applied to our
SR-ARAP energy. Since the strength of a shape interpola-
tion method is based on its underlying energy, especially
when leaving the example space (e.g. example-based de-
formation), we design a new shape interpolation method
based on the SR-ARAP energy, using concepts similar
to those used in our new interpolation method in the
previous section.
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Figure 3: Elephant extrapolation using SR-ARAP: ¢ = —0.25,0,0.25,0.5,0.75,1,1.25 (Source shapes are in yellow,
interpolated shapes are in blue, and extrapolated shapes are in pink).

We now consider the maps’ differentials dfpr, =
QUPY)T, dfi = QL(PH)T for the surface edge sets
(where 1 stands for pseudoinverse), with P, Q% defined
as before (but now of dimension 3 x ||, where |&]
is the number of edges in an edge set &), compris-
ing of columns of weighted vector edges (e.g. uniform
weights). The method in the previous section cannot be
used here immediately, since the maps” differentials are
not unique. When using a 1-ring edge set, the linear sys-
tem that determines the map differential, df;, P} = Qi,
is overdetermined, and the surface cannot be uniquely
determined. Thus, we use a triangle edge set (|&;| = 3).
The linear system that determines its map differential is
underdetermined (three coplanar vectors), and thus the
energy in (9) does not determine a unique shape. There-
fore, we regularize the energy by prescribing rotations
difference (enforcing them in the least-squares sense),
such that the surface could be uniquely determined, and
deviation from the interpolated bending is minimized.
Note that penalizing the rotation smoothness instead,
as in the deformation, is not enough. This is because
it would only force the rotations to be smooth, while we
need specific information (specific rotation difference) to
determine a desired shape, which does not necessarily
optimize the rotation smoothness energy. Given the spe-
cific rotation difference, the change in the dihedral angles
can be inferred uniquely. For a map f;, we define the ro-
tation difference between two edge sets &, & as dRyi;, =
RikR;ﬁ, where R, R; are the rotational components of
the respective maps’ differentials of the edge sets (dRo;x
is again the identity). We define the interpolation of the
rotation difference as dR;, = Slerp(dRok, dR1x;t), and
the linear interpolation of the stretching part Y}, as in (8).
We solve for an intermediate shape A; by minimizing
(w.r.t. ¢;, the vertices of M;)

Esp(My, My,t) =
m
min Z Z cijillai; — RiYapy;|®
R];--<7R7” ESO(B) k=1 (Z ])Egk

_l,_a/i Z wkl||Rk - deleH%‘ )
SZGN(Sk)

(10)

where p?j are the edges of the source mesh Mj. To reit-
erate, the first term in (10) prescribes new interpolated
edges in an edge set. The second term prescribes the

interpolated rotation difference between the edge set
and its neighbors, which varies between the identity
matrix and the difference between the edge sets and
its neighbors in M;, and in essence prescribes an inter-
polated dihedral angle. Another perspective is instead
of treating the reference mesh as M;,, we interpolate
the reference mesh (between My and M), and then the
second term is just smoothing the rotations of the map
differentials from the interpolated reference mesh (where
smoothing can be viewed as prescribing zero rotation
difference). Note that unlike the interpolation of edge set
rotations with Slerp, interpolating the rotation difference
with Slerp can be regarded as safe, since we expect the
difference to be small for a map between similar shapes.
The energy is minimized using the same local/global
method described in Section 2.3.

4 RESULTS AND DISCUSSION

Implementation CGAL [47] was used for triangle mesh
operations, TetGen [48] for tetrahedral mesh operations,
and Eigen [49] for the linear algebra. In our experiments
we did not use interior points when generating the
tetrahedral meshes, and we used the surface of the
tetrahedral mesh as an input for the surface case. The
models were scaled to tightly fit inside a unit cube
scaled by ten. The source mesh was used as an initial
guess for the optimization process. For the SR-ARAP
weights in Eq. (5), we experimented with cotan weights
and uniform weights 1 for c¢;;,. For the models with
reasonable triangulation quality (where triangles have
good aspect ratio, and their size does not vary much),
using 1 for wy; was usually enough to get compelling
results. Otherwise, we used the weights from the first
and second approaches in Section 2.2, which performed
similarly. In both cases we normalized the weights to
sum to one on a neighborhood. The effect of a proper
discretization and the choice of weights is shown in
Figures 14, 15, and 16. We used 0.01 for o, which did
not prove to be a sensitive parameter. With the ARAP
surface energy we experimented with the 1-ring edge
set, with and without rim edges, and uniform and
cotan weights. With SR-ARAP we experimented with
the three types of surface edge sets. On our models, the
changes in the resulting mesh were imperceptible when
using different edge sets for the surface energies. For
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Figure 4: Spiral extrapolation using our formulation for
ARAP volume: ¢t = —0.25,0,0.25,0.5,0.75,1,1.25,1.5,1.75
(Source shapes are in yellow, interpolated shapes are in
green, and extrapolated shapes are in pink).

Figure 5: Bar twist extrapolation using our formulation
for ARAP volume: ¢t = —1,-0.5,0,0.5,1,1.5,2 (Source
shapes are in yellow, interpolated shapes are in green,
and extrapolated shapes are in pink).

the ARAP volume (tetrahedral edge sets) we used cotan
weights. We stopped the iterative process when the
maximum change in the mesh coordinates was below
1073,

Performance It has been noted in [2] that the number
of iterations required to get reasonably close to a mini-
mum depends on the condition number of the anchored
Laplacian matrix, which is generally proportional to the
number of vertices. Moreover, it has been discussed
in [1] that the main limitation of the local matching

©

n "‘ 0 —

=] = © &0 < =

s |2 | 8|2 | &8¢

Model % & & s e =

Cylinder 48 1 9.6 13 | Tri | 709 | 6.9
Tet | 111 | 1.7

SR | 195 | 25

Goblin arm | 24 49 88 Tri | 166 16
Tet | 79 7.6

SR | 285 | 32

Octopus 149 | 299 | 509 | Tri | 817 | 368
Tet | 338 | 160

SR | 480 | 267

Bar twist 6 12 18 | Tri | 124 | 3.8
Tet | 556 | 10

SR | 713 | 16

Elephant 47 95 | 167 | Tri | 684 | 203
Tet | 741 | 144

SR | 988 | 206

Table 1: Performance. We ran the experiments on a lap-
top with a 2.2Ghz Intel Core i7-2720QM CPU. #Vertices,
#Triangles, and #letrahedra are the number of the model
vertices, triangles, and tetrahedra in thousands; Energy
is the type of energy that was used, where Tri stands
for ARAP surface, Tet stands for ARAP volume, and
SR stands for SR-ARAP; #lterations is the number of
iterations using the local/global method; and Total is the
total deformation time in seconds. The first three models
are the result of a shape deformation, and the last two
models are the result of a shape interpolation at time
t=0.5.

is that it corresponds to an error diffusion process,
and hence exhibits the typical behavior of an iterative
smoother, which takes impractically long to converge.
Thus, for an application that requires interactive rates,
multi-resolution technique should be employed [17],
[1], [30], [5]. Another approach that has been taken in
previous work is to terminate the optimization after an
arbitrary number of iterations [2], [28], compromising on
the results quality. Our timings in Table 1 illustrate the
need for such approaches. Since our contribution does
not extend to optimization of the elements in a single
iteration nor to lowering the number of needed itera-
tions, we will not discuss the timings any further. We
will focus instead on the theoretical runtime complexity
of our new methods, which is independent of employing
the previous approaches that improve the runtime.

We start by comparing the runtime complexity of
the SR-ARAP and ARAP surface animation methods.
Unlike the ARAP surface, the optimized rotations in
the local step for SR-ARAP are codependent. Since we
optimize each rotation independently, while fixing the
others, the local step can be considered as a relaxation,
thus more than one local iteration can be executed before
performing the global step. In our experiments we found
that using two local relaxations for each global iteration
is a good tradeoff (depends on relaxation cost vs. global
step cost, which are implementation dependent); see Fig.
10.
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Figure 6: Armadillo interpolation using SR-ARAP: ¢ = 0,0.25,0.5,0.75, 1 (source shapes are in yellow).

)52

219

)29

Figure 7: Morphing a bar into the survey cylinder: ¢ = 0,0.25,0.5,0.75,1 (source shapes are in yellow). There is
a group of three intermediate shapes for each method; from left to right: Slerp, ARAP surface, SR-ARAP. A few
vertices at the bottom of the bar are statically anchored, and the center vertex at the top of the bar is constrained

and animated.

Figure 8: Lion interpolation using SR-ARAP: t =
0,0.25,0.5,0.75,1 (source shapes are in yellow).

Another issue that needs to be addressed, due to
the dependency, is parallelism. Similar to the red-black
relaxation method, we partition the edge sets into five
independent groups, allowing for the same level of
parallelism as the ARAP surface. More specifically, we
construct a graph, where each edge set is a vertex, and
there is an edge between neighboring edge sets. We color
the graph vertices, such that two vertices sharing an
edge would have different colors [50]. We partition the
edge sets according to the colors. Now, optimizing (6) for
group can be done in parallel (we use OpenMP), since
the neighbors of each edge set in the group are fixed
(belong to another group).

Note that the number of 1-ring edge sets is half of
the number of triangle edge sets (Euler’s polyhedron
formula), and the SR-ARAP shape interpolation can use
only triangle edge sets. In our experiments we found
that an SR-ARAP with two relaxations per iteration
requires on the average the same number of iterations to
converge as the conventional ARAP surface technique,
making it twice as slow as the ARAP surface. Still,
one iteration of SR-ARAP outperforms one iteration
of the ARAP volume technique. For example, when
considering deformation, SR-ARAP can use 1-ring edge
sets, and the ARAP volume would need on the average
more than three times tetrahedron edge sets, this
without considering additional vertices (Steiner points).
As explained in Section 3.1, our shape interpolation
method for ARAP volume outperforms the method in
[3] by a factor of the number of interpolated shapes.
The complexity analysis may not be reflected in Table
1, due to implementation difference.

Results We demonstrate the SR-ARAP deformation
on the benchmark models from the survey [20]; see
Fig. 1, 9. Note that a comparison to the survey models
implies a comparison to the surveyed methods, and
subsequent works that performed this benchmark as
well. Since the survey did not supply the results for the
ARAP surface and volume methods, we provide them as
well. Sorkine et al. [2] provide results on models that are



TVCG-2013-10-0283

lrress

Figure 9: Survey models deformation; from left to right in each group: ARAP surface, ARAP volume, SR-ARAP

(the plane has no volume).

—— 1 relaxations/iter|
—— 2 relaxations/iter|
—— 3 relaxations/iter|
~—— 6 relaxations/iter
—— 9 relaxationsl/iter|
200 B

1 1 | 1
0 100 200 300 400 500 600
Iteration

Figure 10: Number of relaxations per iteration and con-
vergence rate tradeoff. Demonstrates the rate of conver-

gence for different choices of number of relaxations per
iteration.

(a) ARAP surface (b) SR-ARAP

Figure 11: Distortion of local elements. We calculated the
distortion of each 1-ring edge set, according to the ARAP
energy in Eq. (1), i.e. its contribution for each edge set,
and we colored the center vertex of each edge set. Warm
colors are associated with larger values. The models are
the corresponding results of Fig. 1. (a) distortion sum
0.937, max distortion 0.025, (b) distortion sum 6.23, max
distortion 0.008.

0" D

Figure 12: Octopus deformation, (Top left) source, (Top
right) ARAP surface, (Bottom left) ARAP volume, (Bot-
tom right) SR-ARAP.

similar to the survey models in shape only, and are far
more coarse. For example, the bar in Fig. 3 in [2] consists
of 500 vertices, while our cylinder in Fig. 1 consists of
4802 vertices - almost ten times as many. This gives us
further intuition. When the models are coarse, each edge
distortion weighs significantly in the total energy in (1),
and thus the minimization distributes the error evenly.
On the other hand, in models of finer resolution each
triangle weighs significantly less, and the minimization
prefers to incur a large distortion on a few triangles, such
as those near the corner of the crease in Fig. 11a, for the
price of a lower distortion in the rest of the triangles.
When adding our rotation smoothness term in (5), this
tradeoff does not pay off anymore. Thus, as can be seen
in Fig. 11, SR-ARAP distributes the distortion far better,
and while in [?-norm it is worse than the ARAP surface
energy, in co-norm it is better. The problem of using an
[>-norm energy motivated bounded error methods such
as [51]. See Fig. 13, 12 for more deformation results.

A demonstration of our interpolation scheme is shown
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(a) Source (b) Front

(c) Top

Figure 13: Bumpy sphere. The red region in the source consists of anchored vertices, and there is a similar region
on the other side of the sphere. From left to right in each of the views: ARAP volume, ARAP surface, SR-ARAP.
The ARAP volume does not preserve well the protrusions on the front. The ARAP surface does not preserve well
the protrusions on the top, and some of them are stretched or connected to each other. Also, the surface itself
resembles the cylinder in Fig. 1: The front and the top parts of the surface are flattened, and between them a corner

is formed.

Figure 14: Cylinder deformation. It is the same cylinder from the survey, with some patches simplified. From left
to right: source, source with texture, the method in [39], the method in [24], SR-ARAP. The first two methods use
uniform weights and are influenced by the variation in triangle size, while SR-ARAP is not.

in Fig. 3-8. Most of the extrapolation is not possible
using the method in [3]. The poses of the armadillo
and the lion in Fig. 6, 8 are the same as in [30], and
the poses of the elephant in Fig. 3 are the same as in
[37], [30], [5]. The difference between the results of the
different methods is not noticeable. In Fig. 7 we animated
one of the constraints during the morphing, as done
in example-based deformation. The first group shows
a surface rotation Slerp similar to [7]. The difference
between the methods is more evident here, outside the
example space (the convex hull of the input shapes
in shape space), where positional constraints are used.
In the accompanying movie, we generated the shape
interpolation animation using our proposed method first
to interpolate a few intermediate shapes. Then, since
the local rotations difference between the intermediate
shapes is small (less than 180 degrees), we interpolated
the rest of the frames between them using Slerp [7]
(both for surface and volume), and one global step of

the local/global method to solve for the coordinates.
The latter amounts to back-substitution, which has a
performance similar to that of LBS.

5 CONCLUSION

The power of the ARAP energy lies in its simplicity. The
implementation involves construction of the differential
of the map from the vectors of the edge sets, polar
decomposition for finding the best rotation, and a so-
lution of a Poisson linear system. It does not require
additional constructions like PriMo, or derivatives of
dihedral angles such in Discrete Shells. We introduced
a new ARAP-type animation technique that is based on
a new SR-ARAP energy. Our technique fills the missing
gaps in the popular ARAP methodology. It offers a con-
sistent discretization, and overcomes weaknesses in the
ARAP surface deformation [2], without compromising
the ARAP simplicity. The quality of the resulting anima-
tion on surfaces competes with the results of the ARAP
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Figure 15: Bar deformation. Some patches on the bar are simplified. On the left are the source mesh and the source
mesh with a reflection map [19]. The first row of results (from left to right): ARAP surface, the method in [39],
the method in [24]. The second row of results: ARAP volume, SR-ARAP with cotan weights for ¢;;; and uniform
weights for wy;, SR-ARAP with cotan weights for c;;, and the weights from [46] for wy;. The first row of results
consists of methods with no proper discretization, which are influenced by the mesh degradation. ARAP volume
was generated without inner points, and thus lacked the freedom to do both bends smoothly. The effect of the
degradation on SR-ARAP, which moves the vertices almost only in-plane, is minimal. The difference between the
choice of weights in the two SR-ARAP results is emphasized by the amount of preservation of the reflection map

pattern.

Figure 16: Bar interpolation: ¢ = 0,0.25,0.5,0.75,1 (source shapes are in yellow). There is a group of three
intermediate shapes for the method in [39] (left) and for SR-ARAP (right). A few vertices at the bottom of the
bar are statically anchored, and the center vertex at the top of the bar is constrained and animated. Some patches
on the bar are simplified. This does not affect SR-ARAP, which moves the vertices only in-plane. On the other hand,
the method in [39], which uses uniform weights, is influenced by the imbalance in the triangulation.

volume energy. We demonstrated the effectiveness of our
technique in the application of shape deformation and
shape interpolation. The latter inspired a new ARAP
shape interpolation method that is superior to prior art
also based on the ARAP energy. As a future avenue, it
would be interesting to test our new SR-ARAP energy
in other applications.
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APPENDIX: INVERSE COTAN WEIGHTS

Following Section 6.4 in [45] (a similar derivation is
given in Section 9 in [52], and in Section 6.3 in [42]), we
develop the explicit formula for the inverse cotan-Laplace.
We compute AR on a dual vertex xo2 (corresponding to
the primal triangle face 02). We have that

< AR, 0% > = < 8dR,x0% >
= — <xdxdR,x0>> .
Using the definition of the discrete Hodge star, followed

by the discrete Stokes’ theorem (and the definition for
the volume of a vertex | * o?| = 1), we get

2
N L L P I
o2
1
= < *dR,0(c?) >

o7l
By the definition of the boundary operator

1 1
= _m<*dR,ZU>

= > <wdR,o' >,

\02|

ocleg?

ocleg?

where o' is one of the three edges in o2. Using the

definition of the discrete Hodge star:

U2| le 2
_ b 3 ﬁ(R(v:)—R(vz))
7] 2, Twot] 10 ’

where v;, v; are two dual vertices, which are the end
points of a dual edge *o'. To remind, |o?| is the area of
a primal triangle face, and

[*xot| _ L
ot 2
where o, 3 are two opposing angles to a primal edge

ol. One pitfall that should be noted is that a dual edge
cannot have zero length.

cota + cotf3)



