

ArtiSketch: A System for Articulated Sketch Modeling

Zohar Levi
Technion

Craig Gotsman
Technion

Eurographics 2013

Sketch-Based Modeling

- Previous work:
- 2D interaction (Teddy [Igarashi et al. 1999])
- Predetermined views (orthographic)
- Rigid object

Rivers et al. 2010

Google SketchUp

Kraevoy et al. 2009

Objective

- Exploit 2D articulated content (e.g. cartoon animations and sprites)

- Assumptions:
- Articulated content (piecewise rigid)
- The animation "imitates real-life"
- What is missing?

The Skeleton

- Missing information: camera transforms
- Can the user supply somehow the missing info? 3D skeleton!

A New Problem

- Input:
- A set of F sketches
- A skeleton in F (initial) poses
- Correspondence
- Output:
- Triangle mesh
- Silhouettes of LBS fit sketch

System Outline

- Camera calibration
- Surface reconstruction
- Volume reduction
- Parts consolidation

Camera Calibration

- The user can't be trusted!
- Objective: Maximize consistency between shape silhouette and sketch contour
- Voxel grid for visual hull carving (discretize camera rays)
- Camera transform = joint inverse transform

ICP-Based Approach

- Previous algorithms: texture, epipolar geometry

- Objective: Minimize Hausdorff distance between rays
- ICP iteration
- Find correspondences between A-rays and B-rays
- Optimize camera transformation
- Generalize: full skeleton, multiple cameras
- Perspective camera: camera dolly step

Camera B view

Surface Reconstruction

- LSM:
- Chan-Vese, GAC, GVF, OMG...

Volume Reduction

- The visual hull = maximal volume
- The user meant something else...

Circle

Heart

- Find rim paths (dynamic programming)
- Silhouette cost
- Proximity cost
- Geodesic cost
- Barycenter cost
- Normal cost
- Bi-Laplacian equation
- Anchors: rim points

Parts Consolidation

- Place a sphere at each joint
- Boolean union
- Bi-Laplacian equation
- Variables: vertices inside spheres

Results

sos?

贯学里

蝣

$$
\frac{x}{x} \frac{x}{x}+5
$$

