

ArtiSketch: A System for Articulated Sketch Modeling

Zohar Levi

Technion

Craig Gotsman Technion

Eurographics 2013

Sketch-Based Modeling

- Previous work:
 - 2D interaction (Teddy [Igarashi et al. 1999])
 - Predetermined views (orthographic)
 - Rigid object

Objective

• Exploit 2D articulated content (e.g. cartoon animations and sprites)

- Assumptions:
 - Articulated content (piecewise rigid)
 - The animation "imitates real-life"
- What is missing?

The Skeleton

- Missing information: camera transforms
- Can the user supply somehow the missing info? 3D skeleton!

A New Problem

• Input:

- -A set of F sketches
- A skeleton in F (initial) poses
- Correspondence

• Output:

- Triangle mesh
- Silhouettes of LBS fit sketch

System Outline

- Camera calibration
- Surface reconstruction
- Volume reduction
- Parts consolidation

Camera Calibration

- The user can't be trusted!
- Objective: Maximize consistency between shape silhouette and sketch contour
- Voxel grid for visual hull carving (discretize camera rays)
- Camera transform = joint inverse transform

ICP-Based Approach

 Previous algorithms: texture, epipolar geometry

- Objective: Minimize Hausdorff distance between rays
- ICP iteration
 - Find correspondences between A-rays and B-rays
 - Optimize camera transformation

- Generalize: full skeleton, multiple cameras
- Perspective camera: camera dolly step

Camera B view

Surface Reconstruction

Volume Reduction

- The visual hull = maximal volume
- The user meant something else...

- Find rim paths (dynamic programming)
 - Silhouette cost
 - Proximity cost
 - Geodesic cost
 - Barycenter cost
 - Normal cost

Bi-Laplacian equation
Anchors: rim points

Parts Consolidation

- Place a sphere at each joint
- Boolean union
- Bi-Laplacian equation
 - Variables: vertices inside spheres

Results

