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Figure 1: Cobra. (a) source domain. (b) Input mapping generated with As-Rigid-As-Possible shape deformation [Sorkine and Alexa 2007],
to be projected on the bounded distortion space with singular values bounded by σ = 0.2,Σ = 5. (d,e) The projection methods [Aigerman
and Lipman 2013; Kovalsky et al. 2015] produce a mapping that is not locally injective (though the triangles are orientation preserving). (c,f)
The projection methods based on [Lipman 2012; Chen and Weber 2015] failed to capture the correct orientation even after many iterations.

Abstract

Computation of mappings is a central building block in many ge-
ometry processing and graphics applications. The pursuit to com-
pute mappings that are injective and have a controllable amount of
conformal and isometric distortion is a long endeavor which has
received significant attention by the scientific community in recent
years. The difficulty of the problem stems from the fact that the
space of bounded distortion mappings is nonconvex. In this pa-
per, we consider the special case of harmonic mappings which have
been used extensively in many graphics applications. We show
that, somewhat surprisingly, the space of locally injective planar
harmonic mappings with bounded conformal and isometric distor-
tion has a convex characterization. We describe several projection
operators that, given an arbitrary input mapping, are guaranteed to
output a bounded distortion locally injective harmonic mapping that
is closest to the input mapping in some special sense. In contrast to
alternative approaches, the optimization problems that correspond
to our projection operators are shown to be always feasible for any
choice of distortion bounds. We use the boundary element method
(BEM) to discretize the space of planar harmonic mappings and
demonstrate the effectiveness of our approach through the applica-
tion of planar shape deformation.
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1 Introduction

Computing a mapping encapsulates in it a myriad of geometry pro-
cessing applications: shape deformation-and-interpolation, param-
eterization, and remeshing to name a few. Smooth mappings with
low angular and metric distortion are often desired as they are vi-
sually more appealing. Furthermore, non-injective and degenerated
mappings can jeopardize further geometric processing operations
such as remeshing and physical simulations.

Most of the available methods do not provide guarantees on the in-
jectivity of the mappings they produce nor can they assure that the
distortion does not exceed a certain threshold, as the problem, in
general, is considered hard. However, the trend in recent years has
been to offer approximate solutions to this unsolved problem with a
wide variety of properties [Lipman 2012; Weber et al. 2012; Aiger-
man and Lipman 2013; Aigerman et al. 2014; Poranne and Lipman
2014; Levi and Zorin 2014; Kovalsky et al. 2014; Chen and We-
ber 2015; Kovalsky et al. 2015]. A main insight that inspired these
methods is that a problem can be solved efficiently if it is convex.
More importantly, no initial feasible point is needed, and achiev-
ing a global minimum is guaranteed (if it exists). Unfortunately,
the underlying bounded distortion problem leads to nonconvex con-
strained optimizations. To overcome this and take advantage of the
convexity benefits, the main paradigm that is offered, for example,
by [Lipman 2012] is to carve a maximal convex piece from the
space of solutions, convexifying the problem. The convexification
achieves its goal only partially. Many types of convex problems
can be solved efficiently, but a choice of which convex piece of the
original space to carve needs to be made, and the global minimum
or even a feasible solution would likely not be in it.

Consider the following mock example to illustrate the concept of
convexification: Find the closest point z ∈ C to a reference point
z0 such that z is inside an annulus (cyan domain in the inset) with
an inner radius 1 and outer radius 2. More formally, we would like
to solve the following optimization problem

min
z∈C

|z − z0| (1a)

s.t. 1 ≤ |z| (1b)
|z| ≤ 2, (1c)
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While the energy (1a) is convex, the domain is not, hence the prob-
lem is nonconvex. A convexification of the problem in the spirit
of [Lipman 2012] would substitute the nonconvex constraint (1b)
with the half-plane (pink) 1 ≤ Re (z). The new feasible domain
(purple) is given by the intersection of the half-plane with the circle
(1c) and it is a maximal convex subset of the annulus. The half-
plane can be chosen to be tangent to the inner circle at any point.

Im

Re
21z0

The particular point is determined in [Lipman
2012] by a choice of a user parameter (so-
called frame). The price for the convexifica-
tion is apparent. We barely covered a quarter
of the annulus. If for example we consider the
reference point z0 = −0.5, the global opti-
mum would be obtained for z = −1, but the
convexified optimization would return z = 1
instead. In fact, there is only one choice of half-plane that would
yield the optimal solution.

Our insight in this paper is that by a change of variables, we
can change the shape of the domain such that it becomes con-
vex (Section 4) or nearly convex (Section 6). In our mock ex-
ample, instead of representing z in Cartesian coordinates, consider
the principal branch of the complex logarithm operator Log(z) =
ln |z| + iArg(z) = l + iθ that maps the annulus bijectively to the
convex rectangle [0, ln(2)] × (−π, π]. Expressing the energy (1a)
in the new variables (l, θ) gives |el+iθ − z0| which is not convex,
however, we can design a different energy with similar geomet-
ric meaning that measures the Euclidean distance in the alternative
rectangular domain. To this end, we also transform z0 using the
same Log operator. We now have the following alternative convex
energy which is minimized over a convex domain

min
l,θ

|l + iθ − Log(−0.5)| (2a)

s.t. 0 ≤ l ≤ ln(2) (2b)
− π < θ ≤ π. (2c)

The alternative rectangular domain is in one-to-one correspondence
with the annulus, so no solutions are overlooked and the problem
is feasible (as long as the original one is). The global minimizer is
attained at (l, θ) = (0, π) which is then transformed back using the
inverse operator, giving z = eiπ = −1.

2 Related Work

The computation of mappings is essential in many graphics appli-
cations such as shape deformation, shape interpolation, parame-
terization, remeshing, and quadrangulation. The amount of liter-
ature is vast and we do not aim at thoroughly reviewing it. We re-
fer the reader to comprehensive surveys depending on the applica-
tion in hand: Parameterization [Floater and Hormann 2005; Sheffer
et al. 2006], deformation [Sorkine 2006; Botsch and Sorkine 2008],
shape interpolation [Wolberg 1998; Alexa 2002] and quadrangula-
tion [Bommes et al. 2013]. All these applications share a common
ground. They all involve the computation of a mapping between
two domains. They differ by the domains they consider, the con-
straints they employ, and the properties of the mappings they at-
tempt to compute. We focus mainly on the works most relevant to
ours, in the sense that they target very specific properties of the un-
derlying mappings. These mappings are bijective (mostly locally)
and they provide control over the induced amount of angular and/or
metric distortion.

A popular approach to guarantee global bijectivity is based on a
classic result by Tutte [1963] that embeds a disk-like mesh in a
convex boundary shape. Floater [1997] generalized the method to

better capture the geometric properties of the mesh, but the ob-
tained mappings tend to be highly distorted when a shape with
strong boundary concavities is unnaturally forced to become con-
vex. These kind of mappings can be viewed as discrete harmonic
mappings, where the smooth analogue to Tutte’s result is the Radó
theorem [Duren 2004]. [Weber and Zorin 2014] and [Aigerman
et al. 2014] bijectively map both the source and the target domains
to an intermediate convex domain using discrete harmonic map-
pings, then invert one mapping and compose with the other to ob-
tain a bijection between nonconvex domains.

Conformal mappings are popular, since they are locally injective
and have zero angular distortion. Linear methods such as [Lévy
et al. 2002; Weber et al. 2009] cannot guarantee local injectivity
while nonlinear (yet convex) methods such as [Springborn et al.
2008; Kharevych et al. 2006] typically achieve injectivity when the
input mesh is of good quality. Yet, conformal mappings tend to in-
troduce excessive scale variations and are somewhat too strict. The
more general class of quasi-conformal mappings is often consid-
ered where a bounded amount of conformal distortion is allowed
and is typically traded-off for a lower scale distortion. The map-
pings we compute belong to that class and additionally ensure that
the amount of scale is bounded without compromising smoothness.
Our method can be viewed as a generalization of [Weber and Gots-
man 2010], who parameterized the space of conformal mappings to
the broader class of quasi-conformal harmonic mappings.

The work of Weber et al. [2012] computes an optimal (extremal)
quasi-conformal mapping given fixed boundary constraints and is
quite robust, though the method is nonlinear and nonconvex. Other
nonlinear approaches such as [Hormann and Greiner 2000; Schüller
et al. 2013] attempt to obtain local injectivity by incorporating infi-
nite penalty for inverted elements. The problem with this approach
is that it requires a locally injective mapping to begin with. In con-
trast, our algorithm can take any input mapping and produce in re-
turn an injective one.

The main difficulty is that the underlying constraints for local in-
jectivity or bounded distortion are inherently nonconvex and can-
not be enforced efficiently in practice. Nonconvex optimization is
considered a hard problem in computer science and mathematics.
A popular and successful approach to address nonconvex problems
of the concerned type is given by the work of Lipman [2012] for
2D manifolds and later extended to volumetric mappings in [Ko-
valsky et al. 2014]. Rather than solving the inaccessible nonconvex
problem, a convex problem is considered. The convex problem is
specifically tailored by substituting the nonconvex constraints with
convex ones, such that they define a maximal convex subspace
within the nonconvex space. Finding a point in this subspace be-
comes easy, and off-the-shelf convex optimization solvers can be
employed. The convex subspace is chosen according to some user
defined parameters (the so-called local frames), which dramatically
affects the final outcome which can be one of two: i) the convex
region is nonempty. In that case the problem is considered feasible
and the global minimum (within the restricted convex subspace) is
attained. ii) the convex region is empty. The former outcome is
clearly preferable. Moreover, it allows for adaptation of the pa-
rameters, followed by additional convex solves which may lead to
further decrease of the energy. The latter case is a complete failure,
leaving us with nothing. Hence, to completely avoid it, the param-
eters are often chosen in a way that ensures feasibility. For planar
mappings the only known sensible choice is the identity mapping
[Poranne and Lipman 2014; Chen and Weber 2015] while for sur-
face parameterization, a Tutte’s embedding has been used [Aiger-
man et al. 2014]. Such a strategy often fails to obtain an optimal
result even when many iterations are performed. Another problem
that arises is that the obtained solution typically lies on the bound-
ary of the feasible domain, which often corresponds to a nonsmooth



mapping.

In contrast, our algorithms solve convex problems without relying
on parameters and in a noniterative fashion, which is possible due to
a clever choice of alternative spaces to operate within. These spaces
are unique to harmonic mappings and are proven to be feasible for
any specified bounds. Operating in these spaces has two additional
benefits. First, any outcome is a C∞ harmonic mapping, hence
smoothness is not compromised even in tough cases. Second, the
convex optimizations we solve are formulated as boundary value
problems in a low dimensional space where similar to [Chen and
Weber 2015], the inequality constraints are enforced only on the
boundary of the domain, leading to highly-efficient algorithms.

Another approach for computing mappings with bounded distortion
is by approximation. Aigerman and Lipman [2013] approximate
the bounded distortion space at a vicinity of a given point with a
convex space. The input to the method is a mapping with high dis-
tortion which is projected to the bounded distortion space by suc-
cessively solving quadratic programs. Upon convergence, the result
is guaranteed to be orientation-preserving bounded distortion, albeit
convergence is not guaranteed.

[Kovalsky et al. 2015] uses a similar approach but employs a re-
markable algebraic manipulation to accelerate the projection. In
a sense, it combines the speed of alternating minimization tech-
niques [Liu et al. 2008] with the low number of iterations usually
required by the Gauss-Newton approach. The results are similar
in nature to those of [Aigerman and Lipman 2013], but are com-
puted more efficiently. Both methods are useful in a variety of
situations and can handle challenging 2D and 3D inputs, but just
like other nonlinear approaches, they cannot guarantee satisfaction
of the constraints or optimality. Moreover, convergence of the al-
gorithm guarantees that the elements (triangles or tets) are not in-
verted. Nevertheless, local injectivity is not guaranteed, since pos-
itive orientation is a necessary but not a sufficient condition for lo-
cal injectivity at vertices. See the last paragraph of Section 3.3 in
[Aigerman et al. 2014] for a discussion. Figure 2 shows a compari-
son of our method with four other methods that project an input of a
holomorphic mapping with a singular point of vanishing derivative.
The above mentioned projection methods re-
sult in a non-locally injective mapping with
the singular vertex left intact. The inset shows
a zoom-in on the singular vertex of the result
by Aigerman et al. Note that all the surround-
ing triangles are positively oriented but the vertex angle sum is 4π.

We conclude this section by referring to [Chien et al. 2016] which
employs similar mathematical machinery and insights on harmonic
planar mappings to perform bounded distortion shape interpolation.

3 Background

For completeness, this section provides an overview of known
mathematical concepts and facts that will be used throughout the
paper. For further reading we refer to the excellent books by Duren
[2004] and Ahlfors [1979].

Harmonic and holomorphic functions. A real-valued function
u(x, y) is harmonic if it satisfies the Laplace equation

∆u =
∂2u

∂x2
+
∂2u

∂y2
= 0. (3)

A planar mapping is a vector function [u(x, y), v(x, y)] from a re-
gion in the xy-plane to a region in the uv-plane. It is harmonic if
both u and v satisfy (3). It would be convenient to use complex
notations and to further rely on complex analysis. Let z = x+ iy;

(b) Input (Cauchy) (c) [Lipman12] (d)[Aigerman13]

(e) [Kovalsky15]            (f) [Chen15]                  (g) Ours (Lν)

(a)

Figure 2: Arrow Twist. Isometric distortion visualized on the
source domain. (a) Source domain. (b) non-injective input holo-
morphic mapping with a singularity, generated by [Weber et al.
2009]. (d,e) not locally injective. (c,f) locally injective but the tail
of the arrow is wrongly rotated. [Lipman12] pushes the singularity
to the boundary while [Chen15] prefers smoothness.

then we have f(z) = u(z) + iv(z). Thus, a complex-valued har-
monic function f : Ω ⊂ C → C can be interpreted as a harmonic
planar mapping. A complex-valued function f = u + iv is holo-
morphic (also known as analytic) in a domain Ω ⊂ C if it satisfies
the Cauchy-Riemann equations at every point z ∈ Ω

∂u

∂x
=
∂v

∂y
,

∂u

∂y
= −∂v

∂x
.

Holomorphic functions are the central objects of study in complex
analysis. They are harmonic complex-valued functions (the con-
verse is not true in general) and possess many strong and useful
mathematical properties. They are differentiable and integrable (on
simply-connected domains), and their derivative and anti-derivative
are also holomorphic. The sums, products, and compositions of
holomorphic functions are also holomorphic, and the quotient of
holomorphic functions is holomorphic wherever the denominator
does not vanish. Closure under complex conjugation does not hold.
However, conjugating a holomorphic function results in a anti-
holomorphic function which is closed under the same operations.

Derivatives. For an arbitrary differentiable complex function f(z),
the Wirtinger derivatives are defined as fz = 1

2
(fx − ify) and

fz̄ = 1
2
(fx + ify). A direct consequence of the Cauchy-Riemann

equations is that holomorphic functions satisfy fz̄(z) = 0, hence,
it is convenient to denote the complex derivative of a holomorphic
function by f ′(z) = fz(z). Anti-holomorphic functions satisfy
fz(z) = 0.

Injectivity and distortion. A continuously differentiable mapping
f is locally injective and orientation-preserving if the following
condition holds everywhere

|fz| > |fz̄| , (4)



where the inequality must be strict. It is easy to see from (4) that the
Wirtinger derivative fz cannot vanish, hence fz 6= 0 is a necces-
sary condition for local injectivity. It is also a sufficient condition
if f is holomorphic. A common misconception is to identify com-
plex holomorphic functions with planar conformal mappings. We
emphasise that a holomorphic function induces a conformal map-
ping only if its derivative f ′ does not vanish, and that holomorphic
functions in general (e.g. f(z) = z2) are not locally injective.

It is often desired to measure and control the amount of angle and
metric distortion induced by f . These can be formulated in terms of
the singular values 0 ≤ σf ≤ Σf of the Jacobian matrix Jf , which
can be expressed by

Σf = |fz|+ |fz̄| , σf =
∣∣∣ |fz| − |fz̄| ∣∣∣. (5)

If f is locally injective orientation-preserving, the latter expression
simplifies to σf = |fz| − |fz̄|. The quantity µf = fz̄

fz
is called

the first complex dilatation and its modulus kf = |fz̄ |
|fz | is the little

dilatation, which is related to the large dilatation Kf (the ratio of
singular values) by Kf =

Σf

σf
=

1+kf
1−kf

. Both kf and Kf measure
the amount of conformal distortion and they are positive and mono-
tonic functions of each other. If f is conformal then kf = 0 and
Kf = 1 at every point in the domain.

The Hilbert transform. The Hilbert transform [Bell 1992] is a
linear operator that takes a harmonic function u(z) and computes
a second harmonic function v(z) such that u(z) + iv(z) is holo-
morphic. The pair u, v are called harmonic conjugates. The Hilbert
transform always exists when the domain is simply-connected and
is unique up to an additive imaginary constant.

3.1 Convexity

We conclude this section with some facts on convexity which will
be useful in the next sections. An inequality constraint of the form
f(x1, . . . , xn) ≤ 0 defines a convex region in Rn if f is a convex
function. More generally, f(x1, . . . , xn) ≤ g(x1, . . . , xn) defines
a convex region if f is a convex function and g is a concave func-
tion. Many useful functions are convex. For example, norms ||x||p
are convex and linear/affine functions are both convex and concave.
Convexity and concavity are preserved under some operations. For
example, we have that the positive weighted sum of convex (con-
cave) functions is convex (concave). We also have that composition
with an affine function preserves convexity and concavity. Mean-
ing, if f is convex (concave) and h is affine, then f(h) is also con-
vex (concave). For further reading on convexity we refer to [Boyd
and Vandenberghe 2004; Grant et al. 2008].

4 Convex Harmonic Characterization

Definition 1. A planar harmonic mapping f : Ω ⊂ C→ C is a
(k,Σ, σ) bounded distortion mapping if it satisfies the following
conditions

kf (z) =
|fz̄(z)|
|fz(z)|

≤ k < 1 ∀z ∈ Ω, (6a)

Σf (z) = |fz(z)|+ |fz̄(z)| ≤ Σ <∞ ∀z ∈ Ω, (6b)
0 < σ ≤ |fz(z)| − |fz̄(z)| = σf (z) ∀z ∈ Ω, (6c)

where k,Σ, σ are real constants.

Equation (6a) sets an upper bound on the dilatation (conformal dis-
tortion) while (6b), (6c) set upper and lower bounds on the singu-
lar values of Jf . Together, (6b), (6c) imply that common mea-
sures of isometric distortion such as (but not limited to) τf =

max(Σf , 1/σf ) are also bounded. We further note that a bounded
distortion mapping is locally injective and orientation-preserving
(see [Chen and Weber 2015], Observation 3).

Definition 2 (BD space). Given a simply-connected domain Ω ⊂
C, the BD space is the function space that contains all the
(k,Σ, σ) bounded distortion harmonic mappings f : Ω→ C (for
some choice of the constants k,Σ, σ).

Searching for a particular mapping f within BD by means of math-
ematical optimization is highly challenging since it is not a convex
space. To illustrate the nonconvexity, consider the identity mapping
Id(z) = z, and rot(z) = −z which rotates vectors by π. Id and
rot are holomorphic, hence harmonic, and they are both isometries,
hence bounded distortion. Yet, their average 1

2
Id+ 1

2
rot is the zero

mapping which is clearly not in BD.

In this section, we show that there exists an alternative convex space
(denoted H) that is in one-to-one correspondence with BD. This
fact will be utilized in Section 5 to project an arbitrary reference
mapping to BD by solving a convex optimization problem. In-
tuitively, our alternative space H relies on the fact that any har-
monic mapping f (on a simply-connected domain) can be decom-
posed into a sum of holomorphic and anti-holomorphic functions
f = Φ + Ψ. Such a decomposition always exists and it is unique
up to a constant that can be fixed by setting Ψ(z0) = 0 at an ar-
bitrary anchor point z0 ∈ Ω (see [Duren 2004] Section 1.2 for a
proof). The other direction is also true. Namely, that a sum of any
holomorphic and anti-holomorphic functions is harmonic. The anti-
holomorphic part Ψ will be shared among the BD and H spaces,
and the holomorphic part Φ will be parameterized inH through the
boundary values of the real-valued function r = |Φ′| [Weber and
Gotsman 2010]. This is possible since we are only interested in lo-
cally injective harmonic mappings, for which the holomorphic part
Φ is in fact a conformal mapping (Lemma 12 in Appendix A). Let
us start by formally definingH.

Definition 3 (H space). Let Ω ⊂ C be a simply-connected domain
in the complex plane. Let r(w) : ∂Ω → R be a continuous real-
valued function defined on the boundary of the domain and Ψ(z) :
Ω→ C be holomorphic in Ω.

A pair of functions h = {Ψ(z), r(w)} belongs to the function space
H if the following inequalities are satisfied at every boundary point

∣∣Ψ′(w)
∣∣ ≤ k r(w) ∀w ∈ ∂Ω, (7a)∣∣Ψ′(w)
∣∣ ≤ Σ− r(w) ∀w ∈ ∂Ω, (7b)∣∣Ψ′(w)
∣∣ ≤ r(w)− σ ∀w ∈ ∂Ω. (7c)

The constants k,Σ, σ, bound the distortion and we assume that

0 < σ ≤ Σ <∞, 0 ≤ k < 1.

Ψ′ is the first complex derivative of Ψ, and |·| is the modulus. Fur-
thermore, we augment the definition by some constants: z0 ∈ Ω
is a user defined anchor point where we assume Ψ(z0) = 0.
θ ∈ (−π, π], and d ∈ C are additional constants.

The constants are merely needed to make the representation unique.
z0 ∈ Ω is a reference point where we can fix a global translation
(d ∈ C) and a rotation (θ ∈ (−π, π]) which are degrees of freedom
that arise from integration. As we will show next, H characterizes
the space of bounded distortion harmonic mappings and, somewhat
surprisingly, unlike BD it is convex as proven below.

Proposition 4 (Convexity). TheH space is convex.



Proof. Based on the arguments given in Section 3.1, the right hand
sides of (7) are affine functionals, hence concave. Additionally,
the left hand side of (7) is a convex functional since |·| is convex
and the derivative is a linear operator. More formally, for any two
holomorphic functions Ψ0,Ψ1, and ∀t ∈ [0, 1] we have∣∣((1− t)Ψ0 + tΨ1)′

∣∣=∣∣(1− t)Ψ′0 + tΨ′1
∣∣ ≤ (1−t)

∣∣Ψ′0∣∣+t∣∣Ψ′1∣∣,
where the right inequality is due to the triangle inequality and the
nonnegativity of t and 1− t.

Optimizing in the convex space H is easier computationally, how-
ever, efficient operators that transfer mappings from BD to H and
vice versa are also needed. These operators are presented next.

Definition 5. F : BD → H is an operator that takes a mapping
f ∈ BD to H using the following procedure. First, decompose f
as follows

f(z) = Φ(z) + Ψ(z), Ψ(z0) = 0 (8)

where Φ and Ψ are holomorphic functions and z0 ∈ Ω is an ar-
bitrary anchor point in the domain. Then, the corresponding point
in H is defined by {Ψ(z), r(w)} = {Ψ(z), |Φ′(w)|}, i.e., Ψ is
maintained, and the function r is defined by differentiating Φ, ap-
plying |·| and restricting to the boundary. Finally, the constants are
determined by: d = f(z0), θ = Arg(Φ′(z0)), where Arg is the
principal branch of the complex argument.

As can be seen, evaluating F is straightforward. Let us obtain
some intuition about the function r. By decomposing the harmonic
mapping f into its holomorphic and anti-holomorphic parts (Equa-
tion (8)), we can obtain the following simple expressions for the
Wirtinger derivatives (Section 3): fz̄ = Ψ′ and fz = Φ′. Taking
norm on both sides gives |fz̄| = |Ψ′| and |fz| = |Φ′| = r from
which we see that the function r(w) in the alternativeH space rep-
resents |fz(w)|. Rearranging the nonconvex constraints of BD (6)
gives

|fz̄(z)| ≤ k |fz(z)| ∀z ∈ Ω, (9a)
|fz̄(z)| ≤ Σ− |fz(z)| ∀z ∈ Ω, (9b)
|fz̄(z)| ≤ |fz(z)| − σ ∀z ∈ Ω. (9c)

Let us verify that F(f) indeed belongs to H. This is simply
achieved by substituting |fz̄| with |Ψ′|, and |fz| with r in the equa-
tions above and restricting to the boundary which results in (7). The
intuition for our construction of the H space is that in the above
nonconvex inequalities, the lhs is convex and the rhs of (9a),(9c)
are also convex. Substituting |fz| with the affine expression r, en-
sures that the rhs is affine, hence concave (Section 3.1) and all three
inequalities are convex.

Going from H back to BD is slightly more involved but is still
straightforward and can be done with the help of the (linear) Hilbert
transform.

Definition 6. F−1 : H → BD is an operator that maps a pair
of functions h = {Ψ(z), r(w)} ∈ H and constants z0 ∈ Ω, θ ∈
(−π, π], d ∈ C to a harmonic mapping in BD using the follow-
ing procedure. First, we evaluate ln(r(w)) on ∂Ω and extend it
harmonically to the interior of Ω by solving the Dirichlet prob-
lem, obtaining ξ(z). Using the Hilbert transform, we obtain a
harmonic conjugate function ζ(z) which is unique for the choice
ζ(z0) = θ. The function l(z) = ξ(z) + iζ(z) is holomorphic and
so is Φ(z) =

∫
el(z) (where

∫
denotes the antiderivative). The

antiderivative is uniquely defined by setting Φ(z0) = d. Finally,
F−1(h) is given by the sum f = Φ + Ψ.

Lemma 14 in the Appendix asserts that the operator F−1 is well-
defined and that it always produces a unique harmonic mapping f
with bounded distortion. Moreover, the Lemma justifies the nota-
tion for F−1 by showing that it is the inverse of the operator F . We
are now ready to state the main theorem which is formally proved
in Appendix A.

Theorem 7. F : BD → H is a one-to-one correspondence (bijec-
tion).

The practical meaning of Theorem 7 is that one can search for a can-
didate h in the convex space H and that for any outcome, a unique
bounded distortion harmonic mapping f can be easily recovered
using F−1. Moreover, any mapping f ∈ BD has its representative
h ∈ H, so we do not “lose” any mapping by using the alternative
H space.

We have shown that by a suitable change of variables, the noncon-
vex BD space can be transformed into a convex one. However, in
order to have a convex optimization, the objective function needs
to be convex as well. This precludes for example, the ability to
directly control position or orientation which are nonlinear in the
alternative variables of H. Handling these is addressed in Section
6 through the definition of two additional alternative spaces. These
spaces are not convex and are theoretically less appealing, nonethe-
less, their near-convexity and guaranteed feasibility leads to supe-
rior results.

In the next section we will discretizeH and explain how to project
an arbitrary reference mapping g to the bounded distortion har-
monic mappings space by solving a convex optimization problem.

5 Optimization

Given user prescribed bounds 0 ≤ k < 1, 0 < σ ≤ Σ, and
an arbitrary reference mapping g, we design a convex constrained
optimization for the projection of g onto BD by minimizing the
following convex energy functional∮

∂Ω

(
r(w)− |gz(w)|

)2

ds+ λH

∫∫
Ω

∣∣∣Ψ(z)′ − gz̄(z)
∣∣∣2da. (10)

Assuming that the distortion of g exceeds the user specified bounds
(i.e., g /∈ BD), our algorithm first transfers g to the alternative
representation using the same F of Definition 5. |gz| in the en-
ergy above can be thought of as rg , and gz̄ plays the role of Ψ′g .
The optimization projects {Ψg, rg}
to a point {Ψ, r} in H which is
then transformed by F−1 to a point
in BD corresponding to a bounded
distortion mapping f . The inset
provides a schematic illustration.

The unique property of our algorithm is that regardless of how
badly distorted the reference mapping g is, and for any choice of
the bounds (strict as they can be), the algorithm always converges
and produces a valid mapping that brings the (discrete) energy to
its unique global minimum.

5.1 Discretization

Let P be a user defined simply-connected polygon oriented coun-
terclockwise. Our domain Ω is defined as the interior of P. Let
{z1, z2, ..., zn} be the vertices of a polygon P̂ (the cage) that is ob-
tained by slightly offsetting P in the outward normal direction, and
let z0 ∈ Ω be a user defined anchor point. We sample the boundary
P uniformly to obtain the setA. The C∞ mappings we compute are
visualized on a meshM that is obtained by triangulating P. The set



B consists of the triangle barycenters ofM. We used a mesh with
roughly 10, 000 triangles for all the results presented in the paper.

The holomorphic function Ψ is defined based on the discrete
Cauchy transform [Weber et al. 2009]

Ψ(z) =

n∑
j=1

Cj(z)ψj , (11)

whereCj(z) ∈ C is the jth holomorphic Cauchy complex barycen-
tric coordinate associated with vertex zj , and ψj are complex coef-
ficients. Cj(z) and its complex derivative, C′j(z), possess rather
simple closed-form expressions [Weber 2010, Appendices B,C].
For any choice of the coefficients ψj , the conjugate of the derivative
of the anti-holomorphic part is

fz̄(z) = Ψ′(z) =

n∑
j=1

C′j(z)ψj , (12)

and is precisely holomorphic. Due to the offset being used, the
derivatives in (12) can be easily evaluated at any point z inside or
on P using a simple formula. We typically use an offset of 0.1% of
the overall length of P. Finally, the function r(w) is discretized as
a continuous piecewise affine function on the boundary and is fully
determined by ri, its value at the samples in A. In order to enrich
the finite-dimensional holomorphic subspace of Equation (11), we
also super sample P̂ such that it has at least 25 vertices.

5.2 The Projection Algorithm

We first evaluate |gz(pi)| and gz̄(pi) on the samples of A and B
respectively. If g is a harmonic mapping expressed in the Cauchy
basis, then gz, gz̄ have closed-form expressions. Otherwise, if g is a
piecewise affine mapping defined onM, we compute gz, gz̄ using
the formula provided in [Weber et al. 2012, Equation (6)]. If g has
a different triangulation than M, we simply use the triangle that
contains the sample pi.

In the second step, we project |gz| and gz̄ to H by solving the fol-
lowing convex optimization problem

min
ψ1..ψn,r1..r|A|

EH

s.t. Ψ(z0) = 0,

∀pi ∈ A
∣∣Ψ′(pi)∣∣ ≤ k ri,

∀pi ∈ A
∣∣Ψ′(pi)∣∣ ≤ Σ− ri,

∀pi ∈ A
∣∣Ψ′(pi)∣∣ ≤ ri − σ.

(13)

EH is obtained by approximating the integral in Equation (10) with
the following quadratic function

EH =

|A|∑
i=1

(
ri − |gz(pi)|

)2

+ λH

|B|∑
i=1

∣∣∣Ψ′(pi)− gz̄(pi)∣∣∣2, (14)

where λH is a positive weight that balances the two energy terms.
We used λH = 1 for all our experiments.

Now that we have a point h ∈ H, the third step of our algorithm ap-
proximates the F−1 operator (Definition 6). We evaluate ln(ri) on
the boundary samples of A, then compute the harmonic extension
to ln(r) (Dirichlet problem) and its harmonic conjugate (Hilbert
transform) simultaneously based on the boundary element method
(BEM) described in [Weber and Gotsman 2010] Section 6. The
idea is to construct a holomorphic function l(z) =

∑n
j=1 Cj(z)lj

Figure 3: Projection of a holomorphic function generated by the
Cauchy coordinates [Weber et al. 2009] via the H space with an
upper bound k = 0, and a lower bound σ = 0.2, such that the
mapping becomes conformal.

and search for the complex coefficients lj such that Re (l(z)) on the
boundary is as close as possible to the prescribed boundary values.
This boils down to solving the following least-squares problem

min
l1..ln

|A|∑
i=1

(
Re (l(pi))− ln(ri)

)2

s.t. Im (l(z0)) = Arg(gz(z0)).

(15)

The equality constraint nails down the constant degree of freedom
of the harmonic conjugate function. Geometrically, it corresponds
to a global rotation of fz and is fixed based on the corresponding
value at g (Definitions 5 and 6).

The function l(z) represents the logarithm of fz(z), hence once the
variables lj are found, we can evaluate Φ′(z) = el(z) at any point
z ∈ Ω. In order to complete the process and obtain f = Φ + Ψ,
we need the antiderivative of Φ′. The closed-form expression we
obtained for Φ′ is holomorphic, hence it is precisely integrable.
However, we could not obtain a closed-form expression for its an-
tiderivative. Nevertheless, we have found that since the Cauchy
coordinates are smooth and Lipschitz (see [Chen and Weber 2015]
for their Lipschitz constants), numerical integration provides supe-
rior results with almost no computational overhead (100ms on our
most complicated model).

Algorithm 1 Projection via theH space

1: Input: g /∈ BD, z0 ∈ Ω, k,Σ, σ Output: f ∈ BD
2: evaluate |gz| , gz̄
3: {Ψ(z), r} := solve (13)
4: l(z) := solve (15)
5: Φ′(z) := el(z)

6: Φ(z) :=
∫

Φ′ such that Φ(z0) = g(z0)

7: f := Φ(z) + Ψ(z)

The integration is done using the trapezoidal rule along a spanning
tree of the graph induced by M, starting from the anchor point
z0 as its root, for which we set Φ(z0) = g(z0) for uniqueness.
This choice ensures that the input reference mapping agrees with
the projected mapping at z0, i.e. f(z0) = g(z0). Any other choice
would correspond to a global translation of f . Algorithm 1 provides
a summary of the projection to BD via the convexH space.

Figures 3,4,5 show the result of our projection algorithm and com-
pare it with the methods of [Lipman 2012; Aigerman and Lipman
2013; Kovalsky et al. 2015; Chen and Weber 2015].

We showed how to efficiently compute a bounded distortion map-
ping that is similar to a reference mapping g, where similarity is
measured by Equation (10). While this procedure is optimal in the
sense that it obtains the closest f ∈ BD to g, the similarity mea-
sure that we use for Φ, the conformal part of f , is based solely on
|gz| and is oblivious to the argument of gz . Intuitively, gz repre-
sents the closest similarity transformation to the Jacobian Jf and
its argument represents the closest rotation. In the next section, we



(a) Input (HC) (b) [Lipman12] (c) [Aigerman13]

(d) [Kovalsky15] (e) [Chen15] (f) Ours (H)

(g) (h)

Figure 4: Leaf. (g) Domain. (a) Highly distorted reference map-
ping with large areas in which the orientation is reversed, generated
using harmonic coordinates [Joshi et al. 2007]. (h) Visualization of
the isometric distortion τf = max(Σf , 1/σf ).

introduce two additional spaces that characterize Φ in a different
manner. Rather than using the real-valued function |Φ′(w)| on ∂Ω,
they are based on the holomorphic function log Φ′ : Ω→ C

log Φ′(z) = ln
∣∣Φ′(z)∣∣+ i arg(Φ′(z)).

Such a representation captures both the scale and the rotational part
of Φ. In contrast toH, these new spaces are not convex. Neverthe-
less, we can still optimize in these spaces using convex optimization
and with the same mathematical guarantees for convergence and
feasibility thatH provides. The mappings obtained using these new
projection operators tend to better resemble (visually) the reference
mappings and are arguably better qualitatively. The first logarith-
mic space, Lν (Section 6.1) is shown to be nearly convex, while the
second one, Lψ (Section 6.2) supports positional constraints.

6 Convex Logarithmic Characterization

Any harmonic mapping (not necessarily bounded distortion) can be
parameterized by its holomorphic derivatives fz, fz̄ , since for any
such functions, their antiderivatives Φ,Ψ exist and are also holo-
morphic, such that the sum f = Φ + Ψ is harmonic. We already
saw (proved formally in Lemma 12 - Appendix A) that a neces-
sary condition for local injectivity of a harmonic mapping f is that
Φ is conformal (have nonvanishing fz). This requirement can be
expressed by |fz| > 0 (the inequality is strict), but since this is
a nonconvex constraint, it is hard to enforce in practice. Instead, it
will be beneficial to parameterize fz using its logarithm [Weber and
Gotsman 2010]. With such a parameterization, no constraints are
required. To see this, let l(z) be any holomorphic function. Then,
el(z) is also holomorphic and nonvanishing, and it can be used to
represent the derivative fz of a conformal mapping.

(a) Input (Cauchy) (b) [Lipman12] (c) [Aigerman13]

(d) [Kovalsky15] (e) [Chen15] (f) Ours (H)

(g) (h)

Figure 5: Square Loop. (g) Domain. Note the symmetry in our re-
sult. The isometric distortion (visualized) show that the input map-
ping has vanishing gz inside the domain (red area).

6.1 The Logarithmic Lν Space

The second complex dilatation of a complex-valued function f is
defined as ν = fz̄

fz
and it is related to the first complex dilatation µ

by k = |ν| = |µ|. For the special case of locally injective harmonic
complex-valued functions, ν is holomorphic. Additionally, since
fz̄ = fzν, one can fully characterize harmonic mappings based on
fz and ν rather than with fz and fz̄ .

The Lν space is based on two holomorphic functions l(z) = log fz

and ν(z) = fz̄
fz

= fz̄
el

. Let us express Σf in terms of l and ν

Σf = |fz|+ |fz̄| = |fz| (1 + |ν|) = eRe(l)(1 + |ν|).

Similarly σf = eRe(l)(1 − |ν|), and with that we are ready to in-
troduce the Lν space.

Definition 8 (Lν space). Let l(z), ν(z) : Ω→ C be two holomor-
phic functions defined on a simply-connected domain Ω. A pair
{l(z), ν(z)} belongs to the function space Lν if the following in-
equalities are satisfied at every boundary point

kf (w) = |ν(w)| ≤ k ∀w ∈ ∂Ω, (16a)

Σf (w) = eRe(l(w))(1 + |ν(w)|) ≤ Σ ∀w ∈ ∂Ω, (16b)

σ ≤ eRe(l(w))(1− |ν(w)|) = σf (w) ∀w ∈ ∂Ω. (16c)

Just like the H space, Lν has one-to-one correspondence with BD
(under suitable choice of some integration constants). The mecha-
nism of the proof is quite similar to that of Theorem 7 and is omit-
ted here for brevity. Given a mapping f ∈ BD, the operator F :

BD → Lν is defined by {l(z), ν(z)} = {log fz(z),
fz̄(z)
fz(z)

}, where
log fz is a holomorphic branch which exists since fz does not van-
ish. For such a branch to be unique, we set Im(log fz(z0)) =
Arg(fz(z0)) for some arbitrary anchor point z0 and augment the
definition with a constant d ∈ C such that d = f(z0).



(b) Input (ARAP)

1

7

(c) [Lipman12] (d) [Aigerman13]

(e) [Kovalsky15] (f)   [Chen15] (g) Ours

(a) Domain

Figure 6: Giraffe. (b,d,e) are not locally injective. (c) is bounded
distortion but nonsmooth. (c,f) have wrong orientation for the neck.
(g) Smooth, bounded distortion and visually resembles the input.

The inverse operator F−1 : Lν → BD is given by f = Φ + Ψ,
where Φ =

∫
el(z) and Ψ =

∫
ν(z)el(z). The degrees of freedom

in the antiderivatives are chosen such that Φ(z0) = d and Ψ(z0) =
0. This ensures f(z0) = d and conforms with the definition of F .

Condition (16a) bounds the conformal distortion and is convex
since the norm is convex. Condition (16c) bounds σf from below
and can be rearranged as σe−Re(l) + |ν| ≤ 1, which is also con-
vex since the exponent is convex, hence the left-hand side is convex
(sum of convex). Condition (16b) bounds Σf from above and un-
fortunately, is not convex. Nonetheless, we can approximate it us-
ing a convex condition without losing much, in a way that bounds
the original function and without compromising feasibility. Let us
divide both sides of (16b) by eRe(l(w)) and take ln on both sides

ln(1 + |ν(w)|) ≤ ln Σ− Re (l(w)) . (17)

Next, decompose (17) into two conditions by introducing an auxil-
iary function s(w)

s(w) = ln Σ− Re (l(w)) ∀w ∈ ∂Ω, (18a)
ln(1 + |ν(w)|) ≤ s(w) ∀w ∈ ∂Ω, (18b)

where (18a) is convex (affine) and (18b) is nonconvex. Con-
dition (18b) is now the only nonconvex condition we have.

1-1

At a single pointw, the boundary of the
domain that is defined by (18b) can be
visualized in R3 as a surface of revolu-
tion (i.e. with circular cross sections)
with a concave generating curve (see
the red curve in the inset). From (16c)
we have that s is bounded from above
by the plane s = ln(Σ/σ) and from
(16a) we have that the feasible domain is bounded by the cylinder
|ν| ≤ k ≤ 1. As the inset shows, the concavity of this domain is
very subtle. We substitute this domain with a second order convex
cone (cyan surface)

|ν(w)| ≤ s(w). (19)

Another way to derive the convexification is to consider the first
term in the Taylor series expansion of ln(1 + |ν|) around zero. The
difference between the convex and nonconvex domains is marked
with purple. The image illustrates the worse case scenario where
the bound k chosen by the user is 1. Typically, k is much smaller
and so, the difference between the domains becomes quite insignif-
icant. By combining (18a) with (19) and adding the other two con-
vex conditions, we arrive at the convex Lν space definition

|ν(w)| ≤ k ∀w ∈ ∂Ω, (20a)
|ν(w)| ≤ ln Σ− Re (l(w)) ∀w ∈ ∂Ω, (20b)

σe−Re(l(w)) + |ν(w)| ≤ 1 ∀w ∈ ∂Ω. (20c)

The advantage of (20) over the convexification approach of [Lip-
man 2012] is threefold. First, it is parameterless and does not de-
pend on the definition of local frames. Second, [Lipman 2012] con-
vexifies the constraints for both kf and σf while we only convex-
ify the constraint for Σf . This is important, since our experiments
show that the constraint for Σf rarely becomes active (implying
that the solution we obtain is mostly optimal). Moreover, in appli-
cations where only local injectivity is required, it can be dispensed
altogether. Third, the above space is nonempty for any user speci-
fied bounds (as strict as they can be), which means that the corre-
sponding optimization problem is always feasible. This is formally
expressed below (see Appendix B for a proof).

Proposition 9. For any real constants k,Σ, σ satisfying

0 < σ ≤ Σ <∞, 0 ≤ k < 1,

there exist holomorphic l(z), ν(z) : Ω→ C satisfying (20).

Implementation details. Similarly to Section 5.1, we discretize the
holomorphic functions l(z) and ν(z) with the Cauchy transform

l(z) =

n∑
j=1

Cj(z)lj , ν(z) =

n∑
j=1

Cj(z)νj . (21)

The projection of the reference mapping g on Lν is done by solving
the following convex optimization problem

min
l1..ln,ν1..νn

El + λνEν

s.t. ∀pi ∈ A |ν(pi)| ≤ k,
∀pi ∈ A |ν(pi)| ≤ ln Σ− Re (l(pi)) ,

∀pi ∈ A σe−Re(l(pi)) + |ν(pi)| ≤ 1,

(22)

where

El =

|A|∑
i=1

∣∣∣Re (l(pi))− ln(|gz(pi)|)
∣∣∣+
∣∣∣Im (l(pi))− θi

∣∣∣, (23)

and

Eν =

|B|∑
i=1

∣∣∣ν(pi)− νg(pi)
∣∣∣. (24)

λν is a weight that balances the two energy terms. We used λν = 1
for all the results. The energy El encourages l(z) (the logarithm
of fz) to be as close as possible to the logarithm of gz . θi are real
constants representing the argument of gz (we explain in Section
6.3 how to obtain them).

The energy Eν encourages the second complex dilatation ν of the
mapping f to be as close as possible to the one of g. Once the
optimal solution is found we have a closed-form expression for
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Figure 7: Colored bar. (a) Domain; (b-g) In each group from left to right: input mapping (ARAP), [Chen and Weber 2015], and ours (Lν ).

fz(z) = el(z) and fz̄(z) = ν(z) el(z) from which we compute
Φ(z) and Ψ(z) by numerical integration similarly to Section 5.2,
where for uniqueness we set Φ(z0) = g(z0) and Ψ(z0) = 0 at the
user specified anchor points z0.

Algorithm 2 summarizes the steps of the projection based on the
convex Lν space. Figures 6 and 7 show some results.

Algorithm 2 Projection via the Lν space

1: Input: g /∈ BD, z0 ∈ Ω, k,Σ, σ Output: f ∈ BD
2: evaluate gz, gz̄ on A and B
3: evaluate ln |gz| , νg := gz̄

gz
4: θg := extract argument from gz (Section 6.3)
5: l(z), ν(z) := solve (22)
6: Φ(z) :=

∫
el(z) such that Φ(z0) = g(z0)

7: Ψ(z) :=
∫
ν(z)el(z) such that Ψ(z0) = 0

8: f(z) := Φ(z) + Ψ(z)

6.2 The Logarithmic Lψ Space

In some scenarios, it is also required to incorporate positional con-
straints into the optimization. Such constraints would be nonlin-
ear in the variables of the Lν and H spaces, and including them
will render the optimization nonconvex. In general, projecting a
mapping g to the bounded distortion space with more than one po-
sitional constraint f(pi) = qi is not always possible since even
the full nonconvex space would be empty for some choices of the
constraints. The next space we introduce is designed to partially
address this requirement by incorporating positional constraints in
a soft fashion and without sacrificing feasibility.

Similarly to the Lν space, we use the function l(z) to represent
the logarithm of fz(z), but instead of ν(z) we use Ψ(z) which,
similarly to the H space, represents the anti-holomorphic part of
the harmonic mapping f . The bounds on the distortion can be ex-
pressed as usual in terms of |fz| = eRe(l) and |fz̄| = |Ψ′|.

Definition 10 (Lψ space). Let l(z),Ψ(z) : Ω → C be two holo-
morphic functions defined on a simply-connected domain Ω. A pair
{l(z),Ψ(z)} belongs to the function space Lψ if the following in-
equalities are satisfied at every boundary point∣∣Ψ′(w)

∣∣ ≤ k eRe(l(w)) ∀w ∈ ∂Ω, (25a)

eRe(l(w)) +
∣∣Ψ′(w)

∣∣ ≤ Σ ∀w ∈ ∂Ω, (25b)

σ ≤ eRe(l(w)) −
∣∣Ψ′(w)

∣∣ ∀w ∈ ∂Ω. (25c)

Lψ also fully characterizesBD, albeit it is not a convex space (Con-
ditions (25a), (25c) are not convex). Nonetheless, for any choice of
fixed Ψ, these inequality constraints can be easily transformed to
a convex form. However, how should we fix Ψ without the risk
of getting an empty space? It turns out that by simply choosing
Ψ(z) = 0 we can always find l(z) that satisfies (25). Note that if
Ψ(z) = 0, Equation (25a) is immediately satisfied and (25b) and
(25c) take a simpler form

eRe(l(w)) ≤ Σ ∀w ∈ ∂Ω, (26a)

σ ≤ eRe(l(w)) ∀w ∈ ∂Ω, (26b)

Furthermore, (26) can be converted to the following equivalent con-
vex (in fact linear) constraints by taking ln(·) of both sides

Re (l(w)) ≤ ln(Σ) ∀w ∈ ∂Ω, (27a)
ln(σ) ≤ Re (l(w)) ∀w ∈ ∂Ω. (27b)

The convex space of (27) is nonempty due to the same consideration
we applied in the proof of Proposition 9. Since Ψ = 0 implies
fz̄ = 0, these constraints actually fully characterize the space of
conformal mappings on Ω with bounded isometric distortion. This
is a convex subspace in the nonconvex Lψ space.

In order to project a reference mapping g to BD via Lψ , we first
compute a conformal mapping satisfying the constraints (27). Once
l(z) is found, we fix the function eRe(l(w)) in (25) and let Ψ(z) in
(25) change freely. For fixed l(z), the constraints in (25) become
second order convex cones. Moreover, with the nonlinear part l(z)
fixed, positional constraints become linear and can be enforced.

Implementation details. The holomorphic function l(z) is dis-
cretized, as usual as l(z) =

∑n
j=1 Cj(z)lj . Our goal is to find a

conformal mapping f with bounded isometric distortion such that
the logarithm of fz , which is represented by l(z), is as close as pos-
sible to the logarithm of gz , where g is the reference mapping. To
this end, we solve the following convex optimization problem

min
l1..ln

El

s.t. ∀pi ∈ A Re (l(pi)) ≤ ln(Σ),

∀pi ∈ A ln(σ) ≤ Re (l(pi)) ,

(28)

where El is the same energy used in (23). Once l(z) is obtained,
we fix eRe(l(w)) in (25) and discretize it such that ri = eRe(l(pi))
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Figure 8: Orange bar with soft positional constraints. (d,e) resem-
bles the reference (b) but are not locally injective. (c,f) are locally
injective and obey the bounds but (c) is nonsmooth and (f) fails to
satisfy the positional constraints.

are positive constants. Ψ(z) is discretized as
∑n
j=1 Cj(z)ψj , and

we solve the following convex optimization for the variables ψj

min
ψ1..ψn

|B|∑
i=1

∣∣∣Ψ′(pi)− gz̄(pi)∣∣∣2 + λp2p

|P|∑
i=2

∣∣∣f(ci)− fi
∣∣∣2

s.t. Ψ(c1) = 0,

∀pi ∈ A
∣∣Ψ′(pi)∣∣ ≤ k ri,

∀pi ∈ A
∣∣Ψ′(pi)∣∣ ≤ Σ− ri,

∀pi ∈ A
∣∣Ψ′(pi)∣∣ ≤ ri − σ.

(29)

The set P = {ci}|P|i=1 contains points in Ω that the user wishes to
map to corresponding target points fi. These are incorporated into
the energy as soft constraints (to ensure the problem is feasible). We
used λp2p = 1000 for all the results. The inequalities are second
order cone constraints and our energy is quadratic, since the term
f(ci) is linear in the variables ψj . The exact expression for it is
obtained as follows. We numerically integrate (Section 5.2) the
holomorphic function el(z) such that Φ(c1) = f1 and obtain Φ(z).
This choice ensures that together with the constraint Ψ(c1) = 0
in (29), the projected mapping f maps c1 to f1. Next, note that
Ψ(ci) =

∑n
j=1 Cj(ci)ψj is linear in ψj , hence, f(ci) = Φ(ci) +

Ψ(ci) is linear.

Algorithm 3 summarizes the steps of the projection process.

Algorithm 3 Projection via the Lψ space

1: Input: g /∈ BD, k,Σ, σ, ci → fi Output: f ∈ BD
2: evaluate gz, gz̄ on A and B
3: evaluate ln |gz|
4: θg := extract argument from gz (Section 6.3)
5: l(z) := solve (28)
6: Φ(z) :=

∫
el(z) such that Φ(c1) = f1

7: ri := eRe(l(pi))

8: Ψ(z) := solve (29)
9: f(z) := Φ(z) + Ψ(z)

6.3 Argument Extraction

The projection of a reference mapping g to the Lν and Lψ spaces
requires as input the argument function θg of the derivative gz ,

(a) Input (har-ARAP) (b) [Lipman12] (c) [Aigerman13]

(d) [Kovalsky15] (e) [Chen15] (f) Ours (Lν )

Figure 9: Orange bar without soft positional constraints.

which encodes the closest local rotation. Such an argument func-
tion θg(z) is a solution to the equation gz(z)

|gz(z)| = eiθg(z). If gz van-
ishes there is no solution. Otherwise, there are a countable number
of solutions: θg(z) = {Arg(gz(z)) + 2πm(z) | m(z) ∈ Z},
where Arg is a single-valued function that returns values in the
range (−π, π]. Since the argument function is multi-valued, one
has to choose m(z) in order to obtain a single-valued function to
feed the algorithm. One possible choice is m(z) ≡ 0, i.e., to use
the principal branch Arg function. However, such a single-valued
function is not necessarily continuous inside the domain.

Let us emphasize that our projection is guaranteed to produce a
C∞ mapping f that satisfies all the constraints, regardless of how
badly distorted g is, including cases for which g or θg are not even
continuous. However, a mapping f in BD always has a continuous
(in fact harmonic) branch of the argument θf . Hence, using θg ,
which is noncontinuous inside the domain, as a reference makes
little sense.

An important question arises: Is it possible to find a single-valued
argument function that (in contrast to Arg) is continuous in Ω? Un-
fortunately, the answer is negative in cases where gz vanishes inside
the domain. For such cases, we construct a continuous (harmonic)
function θg(z) that agrees with the argument of gz on the bound-
ary. The main idea is to push the discontinuity to the boundary of
the domain at strategic points. Then, the continuity in the interior
will be implied implicitly due to the harmonicity of θg(z).

We rely on the fact that for nonvanishing holomorphic functions,
a continuous branch of the logarithm always exists, and it is holo-
morphic. The idea is to start by computing a holomorphic function
Γ(z) that is as close as possible to gz (unless the input g is har-
monic, and gz is holomorphic already). Then, we search for the
(isolated) zeros of Γ(z) and in case they exist, we “push” them to
the closest boundary point.

Projecting gz to the holomorphic function space is done by solving
a simple unconstrained least-squares problem

min
γ1..γn

|A|∑
i=1

∣∣∣Γ(pi)− gz(pi)
∣∣∣2, (30)

where Γ(z) is discretized as
∑n
j=1 Cj(z)γj .

Next, we search Ω for zeros of Γ(z) by iterating all the triangles
in our triangulation, searching for a zero inside each triangle. To
this end, we apply Cauchy’s argument principle which asserts that
the number of zeros of a holomorphic function inside a simply-



connected domain is given by the following boundary integral

N =
1

2πi

∮
∂Tj

Γ′(w)

Γ(w)
dw, (31)

where ∂Tj here represents the three edges of the jth triangle. Eval-
uation of the integral is done numerically and can be avoided for
the vast majority of the triangles by employing the sufficient con-
ditions for the lack of zeros that are provided by [Chen and Weber
2015, Section 6.4], such that only if these fail, the integration is
employed.

Equation (31) has an interesting geometric meaning. The integrand
is the derivative of the function log(Γ). Starting from a bound-
ary point w, integrating along the boundary in a counterclockwise
direction measures the total change in the argument of Γ. Each
zero in the domain adds an extra loop to the image of the bound-
ary curve under the mapping, increasing its turning number by 1.
For example, if there is one zero present, the total change in argu-
ment would be precisely 2π and the turning number of the target
boundary curve would be 2 rather than 1.

Our strategy to counteract these extra unnecessary turns of the
boundary is quite simple, yet proved to be very effective. In case
a zero is found at z0, we find a point b0 ∈ ∂Ω on the boundary
that is closest to z0. We then compute θg by integrating the angular
change dθ along the boundary, but when we reach b0, we subtract
2π from θg and continue to integrate till we get back to the starting
point. Doing this for all zeros ensures that the total change in argu-
ment will be 0. Note that the function θg that we have constructed is
discontinuous on the boundary but smoothness of the final mapping
is guaranteed due to the smoothness of the Cauchy basis functions.
Algorithm 4 summarizes the process of extracting θg .

Algorithm 4 Argument extraction

1: Input: gz(z) Output: θg
2: if g is harmonic then
3: Γ(z) := gz(z)
4: else
5: Γ(z) := solve (30) to project gz(z) to the holomorphic space
6: end if
7: ∀i ∈ 1..|A|, ∆θi := Arg(Γ(pi+1)/Γ(pi))
8: Z0 := {z0 ∈ Ω |Γ(z0) = 0}
9: for each z0 in Z0 do

10: i := index of the closest point in A to z0

11: ∆θi := ∆θi - 2π
12: end for
13: θ1 = Arg(Γ(p1))
14: ∀i ∈ 2.. |A|, θi := θi−1 + ∆θi

6 and 7 show some results.

7 Results

We implemented the three projection algorithms that are presented
in this paper using Matlab. We used the CVX 2.1 software for Dis-
ciplined Convex Programming (DCP) [Grant et al. 2008] to model
these optimization problems. CVX automatically converts a con-
vex problem that adheres to the DCP rules to a form that can then
be solved by a wide range of commercial solvers. We used Mosek
[ApS 2015] as the underlying solver. The running time of each
projection algorithm is dominated by that of the particular con-
vex optimization (13),(22),(28),(29). On a problem with moderate
size with 50 Cauchy basis functions and 300 boundary samples, the
solve took approximately 1 second, and we observed that the run-
ning time roughly scales linearly with the problem size. Solving
(22) is somewhat slower than (13),(28),(29) as CVX 2.1 does not

(a) Domain

(b) Input (har-ARAP) (c) [Lipman12] (d) [Aigerman13]

(e) [Kovalsky15] (f) [Chen15] (g) Ours (Lψ)

Figure 10: Arm with soft positional constraints. All the methods
satisfy the positional constraints. Our result resembles the one of
Chen’s and is smoother compared to Lipman’s. The color plots
visualize the isometric distortion τf .

have built-in support for exponential cones. Nonetheless, they all
have comparable running times. On our largest model with 150
basis functions and |A| = 1000 samples, the running time was 3
seconds.

We used the same default parameters for all the figures as explained
next, unless stated otherwise. The lower bound σ was set to 0.2, and
the upper bound Σ was set to 5. The upper bound on the conformal
distortion k was set to 0.7. We used the following definition for
the isometric distortion τf (z) = max(Σf (z), 1/σf (z)) and visu-
alized τf (z) (or kf (z) if explicitly noted) on the source domain Ω
using Matlab’s jet color scheme (red for high values and blue for
low). Wherever we used positional constraints (for the Lψ projec-
tion), we marked the target position of the point with a cyan disk,
while the actual deformed position is marked with a smaller black
disk to visually illustrate satisfaction of the constraints.

The following unconstrained methods were used to generate the in-
put mappings for our experiments: As-Rigid-As-Possible (ARAP)
shape deformation [Sorkine and Alexa 2007]; unconstrained har-
monic ARAP (har-ARAP) which is a simplified version of [Chen
and Weber 2015] that minimizes the same ARAP energy within
the same harmonic subspace, but without the bounded distortion
constraints; Cauchy coordinates [Weber et al. 2009] with or with-
out positional constraints; and harmonic coordinates (HC) [Joshi
et al. 2007]. Unconstrained methods tend to concentrate distortion
at strategic locations. For example, [Weber et al. 2009] generate
results which are holomorphic but typically not conformal, having
vanishing derivative at several points inside the domain. This is
illustrated in Figures 5,12. The zeros of the derivatives are easily
spotted by looking at the color visualization for τf since at these ze-
ros, σ vanishes and τf becomes infinite (indicated by red regions).
We compared our results with the projection methods of [Aiger-
man and Lipman 2013; Kovalsky et al. 2015] as well as with the
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Figure 11: Bull. Projecting a reference mapping that was produced
with the ARAP method. Comparison of the results of our three
spaces with alternative methods. The color visualization shows the
conformal distortion kf .

constrained optimization methods of [Lipman 2012] and its smooth
harmonic counterpart [Chen and Weber 2015]. This is done by min-
imizing the following quadratic energy subject to the convexified
conformal and isometric constraints

min
f

|fz − gz|2 + |fz̄ − gz̄|2 + λp2p|f(ci)− fi|2 (32)

[Aigerman and Lipman 2013] typically required 4-8 iterations to
converge. The running time of each iteration is dominated by the
solution of the underlying quadratic program (QP) and is similar to
ours on small to moderate size meshes. [Kovalsky et al. 2015] typ-
ically required 30-70 iterations, where each iteration requires only
a linear solve (with prefactored left hand side matrix) and generally
was faster. Nevertheless, the acceleration procedure proposed by
Kovalsky et al. is only applicable to bound conformal distortion.
For appropriate comparison, we incorporated isometric constraints
similarly to Aigerman’s (QP). This resulted in slower computation
times. Nonetheless, the purpose of doing so is to assess the qualita-
tive behavior of the algorithm only. We allowed the methods to per-
form up to 300 iterations before declaring failure of convergence.
For [Lipman 2012; Chen and Weber 2015], 25 iterations were per-
formed, which were enough for convergence. The running time of
each iteration is dominated by solving an SOCP and is similar to
ours, though our method performs a single iteration. Moreover, in
the mesh-based methods, the number of variables and inequality
constraints is linear in the number of mesh vertices, whereas in our
method, these depend solely on the complexity of the boundary.
Hence, if one wants to use the mesh-based methods to produce re-
sults which are much smoother, it would take significantly longer to
compute. For all these experiments, we used meshes with roughly
10,000 triangles.

Both [Lipman 2012] and [Chen and Weber 2015] require proper
initialization to operate. These are encoded with local frames that
determine the convexified subspace. For the method to guarantee
feasibility and to produce locally injective mappings, the frames
must be extracted from a bounded distortion mapping. Hence, in
all the results presented, we used the identity mapping for initial-

ization (which is the only available choice). In many cases where
g is significantly different from the identity mapping, the projected
mapping was quite far from the expected result even after many iter-
ations (the nonconvex minimization is essentially trapped in a local
minimum). This is evident in Figures 1,14,15. We also tried ini-
tialization with frames extracted from the input g. However, these
two methods have the property that they preserve the zeros set of gz .
Hence, in cases where the reference mapping contains singularities,
the result will not be locally injective (since gz 6= 0 is a necessary
condition for local injectivity). We refer to [Aigerman et al. 2014,
Section 3.3] for further discussion. The results obtained with this
initialization visually resembled those of [Aigerman and Lipman
2013] and [Kovalsky et al. 2015], and were omitted. Hence, all the
included results for [Lipman 2012] and [Chen and Weber 2015] are
locally injective (away from the boundary) and obey the bounds.

Let us consider the example of the pants in Figure 12. Figure 13
shows the steps that [Lipman 2012] takes and the evolution of the
rotation which is unintuitive and result in an unnecessary small loop
on the boundary. [Chen and Weber 2015] took similar steps. The
difference between Chen’s result and Lipman’s result is that Chen’s
favored smoothness over fidelity to the input due to the restriction
to the harmonic space.

The Lν and Lψ spaces address the rotations problem specifically
and without iterations. In Figure 1, where the input mapping is a
spiral, the wrong rotations that were obtained by [Lipman 2012] and
[Chen and Weber 2015] are clearly illustrated. The same behavior
is illustrated on a large collection of deformations with significant
bending of a bar model in Figure 7. The superiority of our method
with respect to the correct handling of rotations is also illustrated in
other examples; see Figures 2, 6, 8, and 14.

Figures 9 and 10 illustrate the effect of smoothness. Lipman’s result
is valid and better resembles the reference mapping compared to
our result. However, ours (as well as Chen’s which is remarkably
similar) is much smoother and have lower average distortion.

Figure 11 compares our three spaces with each other and with the
alternative methods. As evident, Lψ and Lν produce quite similar
results. Such a behavior was generally observed when no positional
constraints are specified. The result of theH space is visually more
distant from the input (especially near the tail which was rotated
by approximately 45 degrees). Figures 8 and 9 use the same ref-
erence mapping as input and allow for comparison of the result of
Lν with that of Lψ when positional constraints are used. A similar
comparison between Lν and Lψ is available in Figures 14 and 15.

In all our experiments, [Aigerman and Lipman 2013] and [Koval-
sky et al. 2015] performed quite similar to each other and tend to
produce mappings which are not locally injective in the presence of
vanishing points of gz . It seems that since there is nothing specific
in these methods that attempts to target local injectivity at mesh ver-
tices, they tend to favor (energetically) singularities of the derivative
if these are present in g. This is evident in all the results except in
Figure 4 in which local injectivity was obtained. The lack of local
injectivity can sometimes be spotted visually in the results by look-
ing at the black curve that surrounds the images. While the curve is
allowed to self-intersect, a curve with “loops” whose turning num-
ber is different than 1 [Weber and Zorin 2014] implies the lack of
local injectivity.

Finally, we provide additional results in a separate supplementary
material document.



(a) Input (Cauchy) (b) [Lipman12] (c) [Aigerman13]

(d) [Kovalsky15] (e) [Chen15] (f) Ours (Lν )

(g)
1
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Figure 12: Pants. (g) Source domain. (h) visualization of the iso-
metric distortion. (c,d) Not locally injective. (b,e) Rotated to the
wrong direction.

(a) Iter 1 (b) Iter 2 (c) Iter 3 (d) Iter 4 (e) Iter 5

Figure 13: The first 5 iterations of [Lipman12] corresponding to
Figure 12(b). Local frames are initialized with identity.

8 Summary and Discussion

We presented a novel framework for the efficient computation of
operators that take an arbitrary planar mapping as input and are
guaranteed to produce in return a similar high quality mapping that
adheres to a set of very strict demands. They should be C∞, locally
injective, and their geometric distortion must be bounded according
to some user specified bounds.

We achieve this by exploiting unique mathematical properties of
complex holomorphic functions and by a sophisticated change of
variables, which allows us to characterize the nonconvex space of
bounded distortion harmonic mappings using three spaces. The
transformation to and from these spaces can be easily computed
using simple operators and the underlying optimization problems
can be solved efficiently in an optimal manner using off-the-shelf
solvers.

The first convex spaceH is shown to be in full correspondence with
BD (the space of bounded distortion harmonic mappings). This is
somewhat surprising since BD is highly nonconvex. Theoretically,
this is a fascinating outcome, however, the transition to the convex
space has its price. Typical objective functions, such as Equation
(32) and positional constraints, become nonconvex in the new vari-
ables. In order to enjoy the benefits of convex programming, we
designed an objective (10) that is convex but does not explicitly

capture the rotational part of the Jacobian. As such, the projected
mapping does not always provide good enough visual fidelity to the
input. We believe that the full strength of the H space will be uti-
lized in other applications such as parameterization, where position
and orientation control are less vital.

The second space, Lν , is based on a logarithmic characterization
of the conformal part of harmonic mappings. In contrast to H, it
controls orientation explicitly. This space is not convex, yet the
detailed analysis in Section 6.1 shows that it is nearly so. To benefit
from convex programming, we use a convexification which does
not depend on user defined parameters and is proven to be feasible.

The last space, Lψ , is specifically designed to address the inabil-
ity of the H and Lν spaces to incorporate positional constraints.
Similar to Lν it is based on a logarithmic characterization and is
not convex. However, in Section 6.2 we show that the space of all
conformal mappings with bounded distortion is a (nonempty) con-
vex subspace of Lψ . Our strategy is then to first solve a convex
program for the “closest” conformal mapping (without positional
constraints). We then show that by fixing the conformal part of the
obtained mapping (and setting the anti-holomorphic part Ψ free)
the problem of finding the closest mapping with soft positional con-
straints is again a convex program. Such a two-step solution is not
optimal but it performs well in practice. If positional constraints are
not required, Lν would be a wiser choice to use.

Limitations. Our method has two main limitations. First, similar
to [Aigerman and Lipman 2013; Kovalsky et al. 2015], our energy
targets similarity to a given reference mapping rather than an in-
dependent deformation functional such as low average distortion.
Thus, in its current form, it cannot be used as a standalone defor-
mation tool but rather as a complement to (any) existing methods.

The second limitation is the inability to guarantee satisfaction of
positional constraints. While none of the currently available meth-
ods has such ability, it is still highly desirable. One of the prob-
lems that arises is that with such constraints even the full space of
bounded distortion mappings might be empty.

Future work. The immediate avenue for extension we would like
to pursue is the application of our spaces to curved surfaces, which
is very useful for parameterization and quadrangulation applica-
tions. While this seems to be possible, it would require a differ-
ent discretization and it is not fully clear yet whether the smooth
properties of holomorphic functions would carry over to the dis-
crete setting. Finally, the existence of a convex space such as
H that completely characterizes the space of bounded distortion
harmonic mappings raises a question about the existence of other
convex spaces with complete correspondence that have alternative
properties and can be employed in different scenarios, allowing the
addition of other types of constraints and design of other objective
functions in a convex framework.

Acknowledgements

This research was partially funded by the Israel Science Foundation
(grants No. 1869/15 and 2102/15). We thank Edward Chien for in-
sightful discussions and proofreading the paper, and the anonymous
reviewers for their valuable comments and suggestions.

References

AHLFORS, L. 1979. Complex analysis, vol. 7. McGraw-Hill Edu-
cation.

AIGERMAN, N., AND LIPMAN, Y. 2013. Injective and bounded
distortion mappings in 3D. TOG 32, 4, 106.



(a) Input (har-ARAP) (b) [Lipman12] (c) [Aigerman13] (d) [Kovalsky15] (e) [Chen15] (f) Ours (Lψ)

Figure 14: Orange bar with soft positional constraints. Due to the symmetric structure of the positional constraints (b,e) were unable to
deviate much from the identity mapping that was used to initialize them and failed to satisfy the positional constraints.

(a) Input (har-ARAP) (b) [Lipman12] (c) [Aigerman13] (d) [Kovalsky15] (e) [Chen15] (f) Ours (Lν )

Figure 15: Orange bar without positional constraints. Our method as well as [Chen and Weber 2015], which uses the same harmonic
subspace, produced smooth results with overall low average isometric distortion while the other methods tend to concentrate the distortion
near the zeros of gz (red areas in (a)).

AIGERMAN, N., PORANNE, R., AND LIPMAN, Y. 2014. Lifted
bijections for low distortion surface mappings. TOG 33, 4, 69.

ALEXA, M. 2002. Recent advances in mesh morphing. In Com-
puter Graphics Forum, vol. 21, 173–198.

APS, M. 2015. The MOSEK optimization toolbox for MATLAB
manual. Version 7.1 (Revision 28).

BELL, S. R. 1992. The Cauchy transform, potential theory and
conformal mapping, vol. 7. CRC press.
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A One-to-one correspondence - Proof of
Theorem 7

Recalling Theorem 7:

F : BD → H is a one-to-one correspondence (bijection).

The proof of the theorem is based on four lemmas.

Lemma 11. Let Φ1,Φ2 be conformal mappings on simply-
connected domain Ω ⊂ C. If ∀w ∈ ∂Ω, |Φ′1(w)| = |Φ′2(w)|,
then ∀z ∈ Ω ,Φ′1(z) = eiαΦ′2(z) for some constant α ∈ R.
Proof. Since Φ1,Φ2 are conformal, their derivatives Φ′1,Φ

′
2 are

nonvanishing holomorphic functions. Hence, there exists a
holomorphic branch for log(Φ′1(z)) and log(Φ′2(z)). Further-
more, h1 = Re (log(Φ′1(z))) = ln(|Φ′1(z)|) and h2 =
Re (log(Φ′2(z))) = ln(|Φ′2(z)|) are harmonic real-valued func-
tions, and Im (log(Φ′1(z))), and Im (log(Φ′2(z))) are their har-
monic conjugates respectively. Since we know that |Φ′1(w)| =
|Φ′2(w)|, we have that h1, h2 agree on the boundary and since the
solution to the Dirichlet problem is unique we must have

ln(
∣∣Φ′1(z)

∣∣) = ln(
∣∣Φ′2(z)

∣∣), (33)

everywhere. Since Im (log(Φ′1(z))) and Im (log(Φ′2(z))) are har-
monic conjugates of the same function, they must be identical up to
some real constant α

Im
(
log(Φ′1(z))

)
= α+ Im

(
log(Φ′2(z))

)
. (34)

Multiplying (34) by i and summing with (33) gives

log(Φ′1(z)) = log(Φ′2(z)) + i α. (35)

Finally, exponentiating both sides concludes the proof.

Lemma 12. If f is a locally injective planar harmonic mapping,
then Φ in the decomposition f = Φ + Ψ (Equation (8)) is a con-
formal mapping.

Proof. Since Φ is holomorphic we only need to show that Φ′ does
not vanish. f is locally injective and fz = Φ′ hence |fz| = |Φ′| >
|fz̄| ≥ 0 (Equation (4)).

Lemma 13. F : BD → H is injective.

Proof. Given f1, f2 ∈ BD such that F(f1) = F(f2) we need to
show that f1 = f2. Using Equation (8) we can write

f1(z) = Φ1(z) + Ψ1(z), Ψ1(z0) = 0, (36a)

f2(z) = Φ2(z) + Ψ2(z), Ψ2(z0) = 0, (36b)

Since F(f1) = F(f2) and based on Definition 5 we have

Ψ1(z) = Ψ2(z), ∀z ∈ Ω, (37a)∣∣Φ′1(w)
∣∣ =

∣∣Φ′2(w)
∣∣ , ∀w ∈ ∂Ω, (37b)

Arg(Φ′1(z0)) = Arg(Φ′2(z0)), (37c)
f1(z0) = f2(z0). (37d)

Since f1, f2 are locally injective, Lemma 12 asserts that Φ1,Φ2

are conformal. Together with Equation (37b), the conditions for
Lemma 11 hold and we can write Φ′1(z) = eiαΦ′2(z). This means
that Φ′1(z),Φ′2(z) differ by a global rotation of angle α. From (37c)
we must have that α = 2πn, for some integer n, hence eiα = 1
and we get that Φ′1(z) = Φ′2(z). Furthermore, the antiderivatives
Φ1(z),Φ2(z) must be identical up to a complex constant. Finally,
by evaluating Equation (36) at z0 and using Equation (37d), we
obtain Φ1(z) = Φ2(z), which together with Equation (37a) lead to
f1(z) = f2(z).

Lemma 14. F−1 : H → BD is a right inverse of F .

Proof. We need to prove that for any h = {Ψ(z), r(w), d, θ} ∈ H,
F(F−1(h)) = h .

Let us first show that F−1(h) is well-defined for any h ∈ H, and
that it is unique and produces a mapping f which is in BD. From
Condition (7c) we have |Ψ′(w)| ≤ r(w) − σ. Since σ is strictly
positive, r(w) is also strictly positive, and ln(r(w)) is a well de-
fined real (single-valued) continuous function on ∂Ω. This means
that we can uniquely solve the Dirichlet problem, obtaining the har-
monic function ξ(z). Moreover, since Ω is simply-connected, the
Hilbert transform of ξ(z) exists and it is unique up to a constant,
hence the function l(z) = ξ(z) + iζ(z) is holomorphic and is
unique for the choice ζ(z0) = θ. The function el(z) is also holo-
morphic and so is its antiderivative Φ =

∫
el. For uniqueness, we

set Φ(z0) = d. f = Φ + Ψ is a sum of holomorphic and anti-
holomorphic functions, hence it is clearly harmonic and it is left to
show that f ∈ BD.

Differentiating f with respect to z gives fz(z) = Φ′(z) =

eξ(z)eiζ(z), therefore on the boundary we have |fz(w)| =

|Φ′(w)| = |eξ(w)eiζ(w)| = eξ(w) = r(w). Similarly, by differ-
entiating with respect to z we have |fz̄(w)| = |Ψ′(w)| , and with
that we can use (7) to determine that the conditions in (6) hold on
the boundary of the domain. In order to show that f ∈ BD, we
need to show that the conditions in (6) hold everywhere. To this
end we apply Theorem 4 of [Chen and Weber 2015] which asserts
that it is sufficient to bound the distortion of a harmonic mapping
on its boundary to imply global bounds as long as fz(z) does not
vanish in the interior. Luckily, the latter condition holds since fz(z)
is the exponent of l(z). We have shown that F−1(h) = f ∈ BD.

It remains to show that F(f) = h. The harmonic decomposition
is unique for the choice Ψ(z0) = 0. Moreover, for this choice we
have f(z0) = Φ(z0) = d. Lastly, Arg(Φ′(z0)) = ζ(z0) = θ.

Finally, a corollary of Lemma 14 is that F is surjective, and since
it is also injective (Lemma 13) it is a bijection which concludes the
proof of Theorem 7. Moreover, since F is bijective, F−1 is also a
left inverse of F .

B Feasibility of the convex Lν space

Proof. First, let ν be zero (this implies that the mapping is confor-
mal). Condition (20a) is immediately satisfied. Substituting ν = 0
in (20b) and (20c), taking ln of (20c) and further rearranging gives

lnσ ≤ Re (l(w)) ≤ ln Σ ∀w ∈ ∂Ω. (38a)

Since lnσ ≤ ln Σ, we can (for example) choose l(w) to be constant
(holomorphic) function l(w) = 1

2
(lnσ + ln Σ) + iC for any real

constant C, which clearly satisfy (38a).
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Supplementary Material

Below we provide some additional results of our method as well as
comparisons with other methods.

(a) Input (b) [Lipman12] (c) [Aigerman13]

(d) [Kovalsky15] (e) [Chen15] (f) Ours (H)

(g) (h)

Figure 1: Projection of a simple holomorphic mapping. (a) The
image of the input mapping, f(z) = (z−0.05)2 applied to the unit
disk domain (g). The mapping is not locally injective and has a sin-
gular point at z = 0.05 where fz = 2(z−0.05) vanishes. The iso-
metric distortion at the singularity is infinite since σf (0.05) = 0.
This is evident by the color visualization of the isometric distortion
(h). Our projection operator removes the singularity while [Aiger-
man13] and [Kovalsky15] maintains it. [Lipman12] pushes the
singularity to the boundary and similarly [Chen15] whose result
is smoother.

(a) Input (Cauchy) (b) [Lipman12] (c) [Aigerman13]

(d) [Kovalsky15] (e) [Chen15] (f) Ours (Lν )

(g) (h)

Figure 2: Pants. Constraints: σ = 0.4, Σ = 2.5. (g) Domain. (h)
Isometric distortion τf visualization of (a-f).

(a) Input (har-ARAP) (b) [Lipman12] (c) [Aigerman13]

(d) [Kovalsky15] (e) [Chen15] (f) Ours (Lν )

(g) (h)

Figure 3: Elf. (g) Domain. (h) Isometric distortion τf visualization
of (a-f).



(a) Input (har-ARAP) (b) [Lipman12] (c) [Aigerman13]

(d) [Kovalsky15] (e) [Chen15] (f) Ours (Lν )

(g) (h)

Figure 4: Pants. (g) Domain. (h) Isometric distortion τf visualiza-
tion of (a-f).

(a) Input (ARAP) (b) [Lipman12] (c) [Aigerman13]

(d) [Kovalsky15] (e) [Chen15] (f) Ours (Lν )

(g) (h)

Figure 5: Square. (g) Domain. (h) Isometric distortion τf visual-
ization of (a-f).

(a) Input (ARAP) (b) [Lipman12] (c) [Aigerman13]

(d) [Kovalsky15] (e) [Chen15] (f) Ours (Lν )

(g) (h)

Figure 6: Troll. (g) Domain. (h) Visualization of the conformal
distortion kf .

(a) Input (har-ARAP) (b) [Lipman12] (c) [Aigerman13]

(d) [Kovalsky15] (e) [Chen15] (f) Ours (Lν )

(g) (h)

Figure 7: Taz. (g) Domain. (h) Isometric distortion τf visualiza-
tion of (a-f).
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