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Fig. 1. Dilo. Top to bottom: texture, a parametrization isometric distortion heat map, and the middle of the tail blowup. On the left is the legend of the colors
of the heat maps of the isometric distortion measure 𝜏 in (3). The tail in previous state-of-the-art results is distorted. In Fang18, while the squares’ shape is not
very distorted, they are badly scaled w.r.t. the most distorted facet.

We present a method for seamless surface parametrization. Recent popular
methods first generate a cross-field, where curvature is concentrated at
singular vertices. Next, in a separate step, the surface is laid out in the
domain subject to derived seamlessness constraints. This decoupling of the
process into two independent problems, each with its own objective, leads
to suboptimal results. In contrast, our method solves both problems together
using domain variables.

The key ingredient to the robustness of our method is a rounding strategy
based on local estimation. The insight is that testing a small patch to decide
between two likely possibilities is a good estimator.

Most distortion measures can be used with our method, which get mini-
mized consistently throughout the pipeline. Our method also enables feature
alignment, as well as alignment to principle curvatures, and isotropic and
anisotropic scaling.
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1 INTRODUCTION
Surface parametrization is a classic problem, and methods in the
field have evolved considerably to produce high quality mappings.
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Nowadays, the mappings are often required to be locally injective
(foldover-free) as well as exhibit low distortion.

Whereas classic methods usually minimize a quadratic objective,
which requires solving only an inexpensive linear system, recent
methods for mapping optimization [Aigerman et al. 2014; Chien
et al. 2016; Levi and Zorin 2014; Lipman 2012; Rabinovich et al. 2017;
Shtengel et al. 2017; Smith and Schaefer 2015] employ more expen-
sive solutions to generate high quality mappings. Where seamless
parametrization is required, previous approaches do not take into
account the new optimization costs, and employing it within their
frameworks is impractical. As a consequence, advanced mapping op-
timization is not fully integrated into the seamless parametrization
pipeline, and the new mapping methods are used only to optimize
the final layout. The objective of this work is to remedy this limita-
tion by incorporating the mapping optimization through the whole
pipeline. The result is seamless parametrization with increased qual-
ity.

We take a closer look at the issue. Given a triangle mesh, the most
common approach to the seamless parametrization problem is to
divide the problem into two stages. In the first stage, a cross field is
constructed, and matchings (or period jumps) are defined. This can
be viewed as defining a conic metric where most vertices are flat
(incident angles summing to 2𝜋 ), and all the curvature is concen-
trated in a few cone singularities, as determined by the matchings.
In the second stage, the cross field is used as local frames to lay out
the mesh in the parametric domain (assigning 𝑈𝑉 coordinates to
vertices) subject to seamlessness constraints that are derived from
the field matchings.
These two steps are considered independent to such an extent

that there is specialized related work that addresses each of the
two problems on its own. The main reason that the stages are sepa-
rated is that solving the first stage is hard. It is mostly tackled using
integer-programming or non-convex minimization. After solving
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for the field, the layout problem can then be solved more efficiently,
using a more general mapping optimization method to solve a stan-
dard planar mapping problem with the addition of cheap linear
equality seamlessness constraints. The problem with separating the
two stages is that the objectives of the two steps are generally in-
consistent. More specifically, the distortion measure of the mapping
that we would like to minimize is used as an objective only in the
second stage of optimizing the layout. This means that the field
that was constructed in the first stage, from which local frames are
derived, is not necessarily optimal for this objective. Usually, the
objective in the first stage is a smooth field, which only indirectly
promotes isometry.

This drawback motivates the key idea for our algorithm. Instead
of a two-stage approach, our approach is to define a single problem
with ametric-based objective, using domain variables. This allows us
to employ recent popular distortion metrics and minimize the same
energy consistently in every step of the algorithm. Our algorithm
also uses a new rounding strategy that is based on local estimation,
which is key to our method robustness. We also offer a variant of
the algorithm that follows the same paradigm to handle feature and
curvature alignment. Finally, we demonstrate how anisotropy is
handled within the framework in a consistent way.

1.1 Paper Outline
The structure of the paper is as follows:
• Section 2 reviews recent work.
• Section 3 defines the formal setup.
• Section 4 introduces themain algorithm for direct seamless parametriza-
tion.

• Section 5 introduces a rounding strategy based on local estima-
tion.

• Section 6 discusses a variant of the algorithm that handles fea-
ture alignment, as well as a generalization that handles principal
curvature alignment.

• Section 7 treats isotropic and anisotropic scaling.
• Section 8 provides an evaluation of the method, where a prac-
tical, small set of challenging benchmark models for seamless
parametrization is offered.

2 RELATED WORK
We review recent work related to seamless parametrization. A pop-
ular approach to the problem is based on cross field generation
[Vaxman et al. 2016], and the main application of the problem is
quad mesh generation [Bommes et al. 2013].
Bommes et al. [2009] smoothly interpolates a cross field that

is aligned with sparse salient principal curvature directions over
the mesh. The cross field is used as frames to lay out the mesh.
Diamanti et al. [2015] generate a field that integrates to a seamless
parametrization and is based on complex polynomials [Diamanti
et al. 2014; Knöppel et al. 2013].

In our context, the ultimate objective of these methods is to con-
struct a seamless parametrization with low isometric distortion. This
is done in two steps: i) constructing a field, ii) optimizing the layout
according to the chosen distortion measure. The objective of the
first step is to construct the smoothest frame field. The motivation is

that a smoother field usually promotes isometry in the end result. As
a simple illustration, consider a developable surface, discretized as
triangle mesh. A perfectly smooth field (with vanishing connection)
can be constructed over the whole surface. This leads to the same
local coordinate frame for all triangles in the second step, which
results in a perfect isometric layout. However, when the surface has
Gaussian curvature, a smoother field only promotes isometry indi-
rectly. In other words, solving for a smooth field is not equivalent
to solving for an isometric mapping, let alone minimizing a specific
isometric distortion measure.

Another inconsistency is the type of norm used in the minimized
energy in the two steps. In the first step, when the field is constructed,
the triangle areas are not taken into account, and the matchings are
rounded in a greedy way. These promote 𝐿∞-norm minimization
(minimizing the maximal error). On the other hand, the objective
of the second step is an 𝐿2-norm, a sum weighted by triangle area.
Optimizing for two different objectives, where one of them only
indirectly encourages low metric distortion, results in a suboptimal
mapping.
Myles and Zorin [2012] describe a method for finding cone lo-

cations and angles by evolving the metric of the surface during a
flattening stage. They approximate the As-Rigid-As-Possible energy
by the scale factor squared. Feature alignment capability is added
in [Myles and Zorin 2013]. While the metric is considered during
the field generation, the objective that they minimize is only an
approximation to make the problem more tractable. Moreover, their
objective is quadratic, and extension to more expensive objectives
is not straight forward.
Based on tracing of the motorcycle graph, Myles et al. [2014]

generate a locally injective mapping that aligns with a given cross
field.

Fang et al. [2018] introduce a hybrid method for quad mesh gener-
ation, which combines field-based parametrization with the Morse-
Smale complex. Their field generation is metric-based [Jiang et al.
2015], but the chosen distortion measure is not flexible.

In the context of surface parametrization, [Li et al. 2018; Poranne
et al. 2017] also work directly with domain variables. They optimize
𝑈𝑉 coordinates and topology to improve mapping distortion and
seam quality.

3 FORMAL SETUP
LetM = (𝑉 ;𝐸;𝑇 ) be a surface triangle mesh (consisting of vertices,
edges, and triangles). Let 𝑓 : M ⊂ R3 → R2 be a piecewise linear
surface parametrization that maps a point 𝑝 ∈ 𝑀 to the𝑈𝑉 plane,
𝑓 (𝑝) = (𝑢, 𝑣). To create a planar global parametrization, the sur-
face is cut along a seam into a disk-topology mesh 𝑀𝑐 . The seam
is defined as a set of seam edges 𝑆 ⊂ 𝐸 and a set of corresponding
boundary half-edges 𝑆𝑐 of the cut mesh𝑀𝑐 . Each seam edge in 𝑆 is
mapped into two twin half-edges 𝑒, 𝑒′ ∈ 𝑆𝑐 in the plane correspond-
ing to the two triangles incident to the edge.

Definition 3.1 (seamless parametrization). We say a parametriza-
tion is seamless if the (𝑢, 𝑣) domain values for corresponding vertices
on both sides of a seam edge are related by

(𝑢′, 𝑣 ′) = 𝑅𝑟90◦ (𝑢, 𝑣) + (𝑠, 𝑡), 𝑟 ∈ {0, 1, 2, 3}, (𝑠, 𝑡) ∈ R2 (1)

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2020.



Direct Seamless Parametrization • 1:3

Algorithm 1: The main algorithm
1 Lay out the mesh isometrically.
2 Initialize the rounding error threshold 𝜖 .
3 while there are edges with non-integer matchings do
4 Round matchings with rounding error below 𝜖 .
5 Derive seamlessness constraints (1) from integer

matchings and add them to the constraint list.
6 Layout optimization subject to the constraints in the list.
7 Increase 𝜖 .

where 𝑅𝑟90◦ is a 90𝑟
◦ rotation. 𝑟 is called a matching. 𝑟 , 𝑠 , and 𝑡 are

associated with an edge.

Definition 3.2 (integer seamless parametrization). We say a parametriza-
tion is integer seamless if domain values across seam edges are related
by

(𝑢′, 𝑣 ′) = 𝑅𝑟90◦ (𝑢, 𝑣) + (𝑠, 𝑡), 𝑟 ∈ {0, 1, 2, 3}, (𝑠, 𝑡) ∈ Z2

and (𝑢, 𝑣) ∈ Z2 for all cone vertex copies.

In this work, our objective is seamless parametrization, and we
considermaking it integer a separate problem, e.g. tackled byCampen
et al. [2015].

4 THE ALGORITHM
This section provides details for the main algorithm of the paper.
The main objective is seamless parametrization, solving for 𝑈𝑉
coordinates. The problem can be formulated using a set of domain
variables 𝑥 :

min
𝑥∈R2×𝑛

𝑟 ∈{0,1,2,3} |𝑆 |
𝜇 (𝑥) (2a)

s.t. ®𝑒′ = 𝑅𝑟𝑒90◦ ®𝑒 , ∀𝑒 ∈ 𝑆 , (2b)
where 𝑥 is the 𝑈𝑉 coordinates of 𝑛 vertex copies in the cut mesh.
𝑟 = (𝑟1, ..., 𝑟 |𝑆 | ) is an integer vector of rotation types for each seam
edge. 𝜇 ∈ R represents the minimized objective (which may encap-
sulate additional constraints), and it varies according to the chosen
distortion measure. (2b) are the constraints on the seam edge vectors
derived from (1).
The problem in (2) is Mixed Integer (MI) due to the matchings,

which makes it hard to solve. Bommes et al. [2009] offered a greedy
Mixed Integer Quadratic Programming (MIQP) solver that mini-
mizes a quadratic objective. Their approach is to start with a smooth
solution and perform one-by-one greedy rounding, which is not
practical for more expensive types of objectives, for example, those
related to bounded distortion or inversion-free mappings. Similarly,
we also start with a smooth solution but proceed to round the match-
ings in batches.

Definition 4.1 (rounding error). Given a scalar 𝑥 ∈ R , the rounding
error is

��𝑥 − ⌊𝑥⌉
�� ∈ [0, 0.5].

Alg. 1 outlines the main algorithm, and we now give details of
the steps.

Initialization.We cut the surface along a (dual) spanning tree of
the facets and lay out the cut mesh in the plane without distortion:
we first map a seed triangle isometrically to the domain and then
lay out its triangle neighbors isometrically. We proceed laying out
neighbors of the growing patch until the whole mesh is laid out.
The seam edges (of the primal cut graph) will have matchings that
are not integer in general.

Rounding Step. Given a rounding error threshold 𝜖 , we round
the matchings of all edges with rounding error smaller than 𝜖 . The
rounding is done based on local estimation (Section 5). The choice
of the increment step for 𝜖 can vary between two extremes: i) round-
ing all matchings at once; ii) rounding matchings one by one. Both
extremes are suboptimal. The first fails on challenging models, and
the second is too slow and often still results in suboptimal mappings.
Through experiments, we found a sweet spot between the two ex-
tremes: increase the threshold in increments of 0.1 (up to 0.5).

Layout optimization. We optimize the layout using a method that
fits the selected objective 𝜇. The layout from the previous iteration is
used to initialize the method (whether as a starting point or a source
to extract initial frames from). For edges with integer matchings,
linear constraints are derived from the seamlessness condition in
(1) [Bommes et al. 2009] and added to the layout problem.

5 LOCAL ESTIMATION
Rounding the matchings is usually done naively: greedily rounding
to the nearest integer [Bommes et al. 2009; Myles and Zorin 2012].
This may lead to suboptimal results or bad layouts with foldovers.
In the supplement, we offer two approaches to recover from bad
layouts. Resorting to these recovery approaches, though, is not ideal.
Runtime aside, even if the resulting layout is admissible (locally
injective), its distortion may be too high; a better approach would
be to somehow round the matchings more cleverly in the first place.
We suggest a new metric-based rounding scheme, which proved
successful on all our benchmark models and is the main ingredient
for our algorithm’s robustness. Our approach is motivated by two
insights:
• The optimal rounding is likely to be one of the two nearest inte-
gers, either the floor or the ceiling of a given non-integer edge
matching.

• A small neighborhood is usually enough to judge which option is
better.
This leads to the following local estimation routine for rounding.

Given an edge matching to round, we consider the local triangle
patch neighborhood of the edge (see Section 8.1 for details). For
both possible values of the rounded matching (floor and ceiling), we
lay out the patch independently, using the same layout optimiza-
tion method that we selected in the main algorithm, and check the
distortion of its resulting mapping. We choose the rounded value
for the matching that results in the lower distortion. Small patches
suffice for a good estimation, and they are fast to lay out (see Sec-
tion 8.1 for details). One can also consider a tailored solver for small
problems based on an analytical solution in the spirit of [Levi and
Zorin 2014], but an off-the-shelf SOCP solver was fast enough in
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Algorithm 2: Feature edge alignment together with match-
ing rounding

1 Lay out the mesh isometrically.
2 Initialize the rounding error threshold 𝜖 .
3 while there are edges with non-integer matchings or unlabeled

feature edges do
4 Round matchings with rounding error smaller (greater)

than 𝜖 .
5 Derive seamlessness constraints (1) from integer

matchings and add them to the constraint list.
6 Label the feature edges with alignment error smaller

(greater) than 𝜖 .
7 Derive alignment constraints from feature edge labeling

and add to constraint list.
8 Layout optimization subject to constraints.
9 Update 𝜖 .

Algorithm 3: Feature edge alignment after matching round-
ing

1 Lay out the mesh isometrically.
2 Initialize the matching rounding error threshold 𝜖𝑚 and the

feature edge alignment error threshold 𝜖𝑎 .
3 while there are edges with non-integer matchings do
4 Round matchings with rounding error smaller (greater)

than 𝜖𝑚 .
5 Derive seamlessness constraints (1) from integer

matchings and add them to the constraint list.
6 Lay out the mesh subject to constraints.
7 Update 𝜖𝑚 .
8 while there are unlabeled feature edges do
9 Label the feature edges with alignment error smaller

(greater) than 𝜖𝑎 .
10 Derive alignment constraints from feature edge labeling

and add to constraint list.
11 Layout optimization subject to constraints.
12 Update 𝜖𝑎 .

our experiments. We round edges with smaller rounding error first.
The algorithm can be easily parallelized if the employed solver is
not already using parallelism (e.g. Mosek).

6 FEATURE ALIGNMENT
For certain models, usually CAD-related, aligning the parametriza-
tion to sharp features is required. For example, when quadrangu-
lating a cube, we would like the sharp cube edges to stay sharp.
To preserve a surface edge in the source triangle (to force it to
coincide with an edge of the generated quad mesh), its correspond-
ing domain (twin half-)edges need to be mapped to integer valued
isolines. We augment our previous definitions to define seamless
parametrization as having feature domain edges parallel to the axes

Algorithm 4:Optimal initial global rotation angle of feature
edges

1 {𝑣𝑖 } := normalized feature domain edge vectors
⊲ Unit vectors to points on a unit circle

2 {𝑝𝑖 } := {𝑜𝑟𝑖𝑔𝑖𝑛 + 𝑣𝑖 }
3 Run k-means on {𝑝𝑖 } to partition it into 4 groups.
4 𝑝 := the mean of the largest group
5 Return the angle between (𝑝 − 𝑜𝑟𝑖𝑔𝑖𝑛) and the 𝑥-axis.

and integer seamless parametrization as having feature domain
edges mapped to integer valued isolines. Our objective remains
seamless parametrization.

In the algorithm, a feature edge is labeled 𝑢-aligned or 𝑣-aligned,
according to the axis it needs to align with. As we did for the seam-
lessness constraints, labeled feature edges are aligned by adding
appropriate linear equality constraints [Bommes et al. 2009] to the
layout problem in (2). We use the same mechanism that we used
to round the matchings for feature alignment. Since a matching 𝑟
represents a rotation angle of 90𝑟◦, we have the following relation
between a rotation angle 𝛼 and a matching 𝑟 :

𝑟 =
𝛼

90 .

Definition 6.1 (alignment error). Let 𝛼 be the angle between a
feature domain edge and the 𝑢-axis. We define the alignment error
of the feature edge as the rounding error of 𝛼

90 .

The algorithm is outlined in Alg. 2, and we now give the details.

Initialization. As in Alg. 1, we start with an isometric layout of
a dual spanning tree with no constraints and zero distortion. Next,
we find an optimal global planar rotation (see Alg. 4) that minimizes
the alignment error of all feature edges, and we rotate the mapping
accordingly.

Threshold steps.We use the same threshold and incremental steps
for both matching rounding error and alignment error. As a natu-
ral, intuitive choice, we start with a low threshold and increase it
gradually by positive steps [Bommes et al. 2009; Myles and Zorin
2012]. The intuition behind this standard strategy is clear: we first
round edges with the smallest rounding errors since their rounding
is more likely to be correct.

Another choice is to do the rounding in a top-down fashion using
negative steps. Then, edges with larger rounding error, which are
considered more “challenging” to round, are processed first. We
consider them more challenging since their change of position (due
to the rounding) is more pronounced, creating more distortion in
the mapping. Rounding them first provides more flexibility, in terms
of how many edges are constrained before they are rounded, and
how much the mapping can be deformed (considering degrees of
freedom) and remain valid. This allows the “easier” edges—those
with less rounding error—the opportunity to adapt and compensate
for the distortion introduced by the “challenging” edges. This can
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also be viewed as sharing the distortion caused by the more “chal-
lenging” edges with the “easier” ones. This second strategy usually
results in more cones, which is necessary in some cases.

Another variation of the algorithm is to first run Alg. 1 to comple-
tion to round the matchings and then label feature edge alignment
separately; see Alg. 3. In this approach, we use soft constraints for
the edge alignment. The advantage of this algorithm is that it is
usually easy enough to parameterize the surface without alignment
constraints, and then adding them as soft constraints guarantees
that the parametrization stays within distortion bounds if such con-
straints are present. The price, though, is potential alignment error,
which in our experiments did not exceed 10−5.

Labeling feature edges. Similar to the local-patch-based rounding
strategy for the matchings, we do the following for the alignment
error to determine feature edge labels. We lay out the local neighbor-
hood of a feature edge twice. In the first time, we constrain the edge
to be parallel to the 𝑢-axis, and in the second time, we constrain
the edge to be parallel to the 𝑣-axis. Depending on which of the
two patch layouts has lower distortion, we label the feature edge as
𝑢-aligned or 𝑣-aligned.

Furthermore, we impose a maximum distortion threshold for
feature edges: when the increase in distortion due to the selected
alignment constraint (estimated by the local estimation procedure)
is larger than the threshold, we disable the feature edge constraint.
This is useful when we have low confidence in the procedure that
detected features. When used in Alg. 3, this distortion threshold
roughly sets the max distortion for the whole mapping. Here, we
consider feature alignment constraints to be less critical than match-
ing constraints.

6.1 Alignment with Principal Curvature Directions
Sometimes, aligning quad facets with princi-
pal curvature directions is desired [Bommes
et al. 2009]. Alignment constraints based on
the mapping Jacobian can be added to the
layout optimization. We opted for a simpler
solution that exploits feature alignment. Con-
sider a facet with given principal curvature
directions. Let 𝑒 be an arbitrary reference
triangle edge vector, 𝑑 the main principal
curvature direction, and 𝜃 the angle between
them; see inset. To align 𝑑 , for example, with the canonical 𝑢-axis,
we need to align 𝑒 with the 𝑢-axis rotated by −𝜃 , which is notated
as 𝑢 in the figure. We use the same procedure of feature alignment
to align 𝑒 with an arbitrary 𝑢 direction (in a cross). Note that in case
of anisotropy (Section 7), the aligned direction should be calculated
with respect to the scaled triangle edge. The solution works well
when expecting low isometric distortion. See Fig. 4 for an example.

7 ISOTROPIC AND ANISOTROPIC SCALING
Anisotropic elements may be desired as a designer choice or to
better approximate the surface local shape [Kovacs et al. 2011].
Bommes et al. [2009] implement anisotropy by penalizing stretch
differently along desired isoline directions. Panozzo et al. [2014]

Fig. 2. Parameterizing the hourglass and bumpy-cube with isotropic scaling.
The heat maps show the user defined scale: 2 in red, 0.5 in light blue, and
free in deep blue. The parts with the free scale were optimized using the
As-Similar-As-Possible energy.

use frame fields, which generalize cross fields and allow to incorpo-
rate anisotropy and scaling. Given sparse user defined anisotropic
constraints, they decouple the symmetric scaling part of the frame
and interpolate it over the surface. They observed that treating
anisotropy in the layout stage alone is not enough, and it should be
taken into consideration when generating a field. For that purpose,
they scale the metric according to the interpolated scaling field and
deform the mesh accordingly. They proceed with finding a smooth
cross field on the deformed embedding.

Following the same consideration, instead of deforming the mesh
and incurring an amount of distortion, we naturally incorporate
anisotropy into our metric-based framework. Moreover, we take
the target distortion measure into account while the method in
[Panozzo et al. 2014] still operates in two decoupled steps of field
generation and layout. Given the symmetric scaling part of a frame
field over the mesh, we incorporate it into the objective of the
layout stage (see supplement). More specifically, instead of using a
source mesh triangle in the selected distortion measure objective,
we use a transformed version of it. The rest of the algorithm remains
unchanged.
In Fig. 2, we demonstrate isotropic scaling. A third of the mesh

facets is given a desired scale of 2, a third is given 0.5, and a third
remains free. Panozzo et al. [2014] interpolate the free part using a
harmonic field. We opted for interpolating the free part by solving
for the optimal scaling. For that, we use conformal distortion in the
layout stage. The supplement provides the details for generating
a quasi-conformal mapping, as well as incorporating an arbitrary
transformation (derived, for example, from an anisotropic frame)
into an optimized mapping objective.

In Figures 3 and 4, we illustrate anisotropy based on principal cur-
vature. While [Bommes et al. 2009] chair result is comparable to ours
(though the quads are a bit too elongated at some places compared to
the supplied desired scaling), the surfboard result demonstrates why
decoupling the field generation from the layout can be problematic.
The surfboard was modeled as a deformed sphere, which was

stretched and flattened. With isometric (i.e. rotation—cross) frames
and no alignment, both methods produce similar results (distortion-
wise).When alignment is introduced (still isometric frames), [Bommes
et al. 2009] produces a field with only eight 3-cones (0.25 field index)
versus six cones without alignment. The field was generated using
sparse fixed frames, set to align with principle curvature directions;
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Bommes09 ours

(a)                    (b)                (c)                   (d)                            (e)                         (f)

Fig. 3. Anisotropy. (d,f) the frames of the surfboard were anisotropically scaled based on principal curvatures’ magnitude, and the mapping was aligned
with principle curvature directions. (a,e) regular cross frames were used with no alignment. (b,c) generated using isotropic frames with principle curvature
direction alignment. (b) generated by minimizing in the layout stage the 𝐿2-ARAP energy (see supplement)—with fixed frames—which is more suited for frame
alignment. The top view shows areas with high distortion and flipped triangles near the cones. (c) generated by minimizing the 𝐿∞-ARAP energy.

Fig. 4. (c) The frames of the chair were anisotropically scaled based on principal curvatures’ magnitude. Moreover, the frames were aligned with principal
curvature directions in places where they were prominent. (a) regular cross frames with no alignment. Principal curvature directions are illustrated in the
blowup on the bottom right corner. (b) [Bommes et al. 2009] result with anisotropy and alignment.

the rest of the cross field was smoothed. The result is that along the
surface, between the two poles, the field is relatively smooth with
no cone interruption. As the field gets near the poles, the board is
getting narrower, and four cones are introduced near each pole.

This field poses an issue in the layout step. There are not enough
cones to account for the narrowing of the surface near the poles (e.g.
compared to our results with 12 cones in the isometric, unaligned
case and 88 cones in anisotropic, aligned case). When an 𝐿2-norm-
based optimization is used, the distortion is concentrated near the
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Fig. 5. Robocat. Top to bottom: texture, a heatmap of the isometric distortion
𝜏 in (3), three other viewpoints, and a distortion histogram.

cones, which forms highly distorted areas and foldovers. When
an 𝐿∞-norm-based optimization is used, the distortion is spread
across the surface, which prevents flips and highly distorted areas.
However, to account for the narrowing near the poles, the mapping
is stretched (and hence distorted)—it is supposed to be squares
due to the isometric frames—throughout the surface. After adding
anisotropy and scaling the frames in the layout step, the mapping
remains stretched in general.
Note that since this problem is inherent to decoupling the two

steps in [Bommes et al. 2009] approach, and it happens even when
isometric frames are used, the approach in [Panozzo et al. 2014]
faces the same issue. More specifically, when isometric frames are
used, the deformation of the surface according to the scaled frames,
suggested in [Panozzo et al. 2014], does not change the surface, and
the result would be identical to [Bommes et al. 2009].

8 EVALUATION
In the evaluation, we chose as our main objective to minimize the
scale-invariant, isometric distortion measure

𝜏 =


√︂

𝜎𝑚𝑎𝑥
1

𝜎𝑚𝑖𝑛
2

𝜎𝑚𝑖𝑛
2 > 0

∞ 𝑒𝑙𝑠𝑒
, (3)
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Fig. 6. Twirl. Top to bottom: texture, an isometric distortion 𝜏 heat map, four
other viewpoints, and a distortion histogram.

Bommes09 Myles13 Fang18 ours

      

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

0% 25% 50% 75% 100%

9.3%

36.1%

21.4%

11.8%

7.5%

6.7%

7.1%

0.0%

0.0%

0.0%

      

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

0% 25% 50% 75% 100%

0.0%

0.0%

0.0%

0.0%

0.0%

0.0%

0.0%

0.0%

0.0%

      

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

0% 25% 50% 75% 100%

44.7%

51.8%

3.0%

0.4%

0.1%

0.0%

0.0%

0.0%

0.0%

0.0%

      

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

0% 25% 50% 75% 100%

65.1%

34.9%

0.0%

0.0%

0.0%

0.0%

0.0%

0.0%

0.0%

0.0%

1

2

3

4

Fig. 7. Sculpt. Top to bottom: texture, an isometric distortion 𝜏 heat map,
two other viewpoints, and a distortion histogram.
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model #tri
ours Bommes09 Myles12 Myles14 Diamanti15 Fang18’s

τ

#it 1
it(sec)

τ #patch

#im
proved

tim
e(sec)

#it τ tim
e(sec)

#it τ tim
e(sec)

#tri #it τ tim
e(sec)

#it τ tim
e(sec)

dancer 18K 13 4 1.5 762 79 76 3 1.9 12 1 ∞ 42K 7 2.6 28 3 1.5 12 5.0
armadillo 100K 12 32 1.7 4727 716 528 1 ∞ 1 ∞ 155K 7 3.8 225 2 1.7 64 7.9
dilo 54K 12 10 1.5 2163 310 188 2 4.6 20 2 4.3 20 80K 4 4.7 41 3 1.6 31 7.2
filigree 100K 11 23 1.7 8593 1062 515 3 2.2 70 4 2.7 94 237K 1 ∞ 3 1.8 70 ∞
knot 100K 13 28 1.4 5580 516 530 2 2.5 56 2 2.5 56 128K 4 1.3 112 3 1.6 84 5.4
dragon 105K 12 31 2.0 10847 1444 695 1 ∞ 1 ∞ 185K 6 4.9 185 1 ∞ 9.1
robocat 8K 12 2 1.7 1066 170 51 1 ∞ 1 ∞ 23K 34 4.2 54 5 2.4 8 27.1
shark 20K 13 5 1.4 920 85 91 2 3.7 10 4 3.2 19 38K 4 3.8 19 6 1.7 29 9.6
twirl 10K 11 2 1.4 650 87 41 2 1.4 4 1 ∞ 17K 1 ∞ 4 2.5 8 74.6
grayloc 69K 10 17 1.6 2926 530 261 1 ∞ 1 ∞ 108K 7 6.0 122 3 1.7 52 ∞
greek_sculpture 50K 11 9 1.9 3536 472 204 1 ∞ 1 ∞ 86K 6 4.2 54 3 1.9 27 61.7
blade_earring 23K 18 4 3.1 1079 173 107 1 ∞ 1 ∞
octopus 33K 14 7 3.5 1575 238 148 1 ∞ 1 ∞
octocat 38K 15 12 1.4 1212 188 211 3 2.8 35 1 ∞
linkCupTop 20K 24 5 3.3 2585 489 208 2 4.0 11 1 ∞

Table 1. Comparing 15 models. Missing data means that the result was unavailable. Columns: #tri, number of triangles; #it, number of local-global layout
iterations; 1 it, the time in seconds to run one iteration of the local-global layout problem; 𝜏 , the maximal distortion measure in (3), where∞ indicates a failure
to generate a locally bijective mapping (Fang18’s results: filigree is non-manifold, grayloc is multi-component); #patches, the number of edges to which the
local estimation procedure was applied; #improved, the number of edges where the rounding choice was influenced by the local estimation; time, the total
time the method spent. For our method, it includes the local estimation and the layout stage. For the other methods, it includes only the layout stage (e.g. the
field generation time is not accounted for).

model #tri
ours Bommes09 Myles13 Fang18’s

𝜏

#it algorithm

step
inc

1
it(sec)

𝜏 #patch

#disabled

#im
proved

tim
e(sec)

#it 𝜏 tim
e(sec)

#it 𝜏 tim
e(sec)

beetle_refined 39K 14 2 + 11 1.9 1541 0 118 201 4 2.7 44 1 ∞ 11 3.4
casting_refined 37K 27 3 + 12 1.9 3470 1 210 431 4 2.3 48 1 ∞ 12 3.4
fandisk 14K 13 2 + 5 1.9 856 0 40 88 2 3.5 10 2 1.4 10 2.6
sculpt 7K 18 2 - 3 1.6 556 0 166 64 8 3.4 21 3 1.3 8 3.0
smooth-feature 12K 19 2 - 6 1.8 279 0 64 119 1 ∞ 6 3 1.4 17 4.0
metatron 50K 27 3 + 22 2.4 6990 1 508 801 2 2.6 44

Table 2. Comparing 6 models with sharp features. Missing data means that the result was unavailable. Columns: algorithm, the algorithm that was used to
generate the result; #disabled, number of feature edges for which the alignment constraint was disabled due to the local estimation; step inc, the direction of
the step increment, positive or negative, i.e. performing the rounding in a bottom-up or top-down order.

where 𝜎𝑚𝑎𝑥
1 and 𝜎𝑚𝑖𝑛

2 are the maximal and minimal singular val-
ues over all mesh triangles. To optimize the layout w.r.t. to 𝜏 , we
used the local-global approach with constraint convexification; see
supplement for details. This objective was used in all the results
unless stated otherwise. Even when other objectives were used, in
the histograms and heat maps in the figures we used 𝜏 , which is
strongly correlated with the other isometric distortion measures.

Runtime. The experiments were performed on a quad core 2.8GHz
CPU. In the local step, the patches were about the same size (using
default BFS level 5), and it took 30 milliseconds on average to lay
out a patch. This means that for the model with the most patches

in the tables, the local estimation part took in total about 200 sec-
onds, and on average it took about 20 seconds. Besides that, the
runtime was dominated by the layout stage, where we note in the
table the average time for one layout iteration (the global step in
the local-global scheme). The layout time for all the methods was
roughly the same. Our method performed 5 batch-rounding steps
(increasing the rounding error threshold), each requiring running
the layout procedure, and in total, our method runtime was roughly
5 times slower than the other methods. For the other methods, we
did not account for the time to generate the fields (e.g. Diamanti
et al. [2015] report 0.8 to 40 minutes per model), and in the tables
we note only the layout time.
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Fig. 8. Dancer. Minimizing the 𝐿2-based ARAP energy. Keeping consistency
with the other figures, histograms and heat maps show the distortion 𝜏 in
(3), which is strongly correlated with the other isometric distortion mea-
sures. Bommes09 result contains 5 flips, and the average distortion is 0.052.
Myles12 result contains 14 flips, and the average distortion is 0.046. Our
result contains no flips, and the average distortion is 0.019.
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Fig. 9. Shark. Minimizing the 𝐿∞-based ARAP energy. Left: Bommes09 with
𝐿∞-ARAP = 0.76. Right: ours with 𝐿∞-ARAP = 0.12. Histograms and heat
maps show the distortion 𝜏 .

model #tri B
om

m
es09

M
yles12

M
yles14

D
iam

anti15

Fang18

ours

dancer 18K 86 99 57 146 168 105
armadillo 100K 248 274 179 426 1208 357
dilo 54K 76 96 62 140 435 204
filigree 100K 827 889 549 877 1025
knot 100K 38 311 42 110 2693 212
dragon 105K 1136 1019 325 958 2180 1575
robocat 8K 230 247 84 300 379 338
shark 20K 65 83 72 187 370 105
twirl 10K 43 49 20 94 209 49
grayloc 69K 197 284 95 243 281
greek_sculpture 50K 299 314 112 416 1275 426
blade_earring 23K 74 148 155
octopus 33K 131 144 162
octocat 38K 170 183 248
linkCupTop 20K 330 501 695

Table 3. The number of cones of the 15 models.
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Fig. 10. Greek sculpture. Minimizing the symmetric Dirichlet energy, which
approximately averages (weighted by triangle area) 2𝜏2. Left: Diamanti15
with symmetric Dirichlet energy = 2.045 and 𝜏 = 3.48. Right: ours with
symmetric Dirichlet energy = 2.040 and 𝜏 = 3.46. Histograms and heat
maps show the distortion 𝜏 .

model #tri Bommes09 Myles13 Fang18 ours

beetle_refined 39K 47 498 46 31
casting_refined 37K 106 436 224 126
fandisk 14K 30 176 66 68
sculpt 7K 8 144 144 217
smooth-feature 12K 10 26 93 132
metatron 50K 80 188

Table 4. The number of cones of the 6 models with sharp features.

Quad mesh generation. We demonstrated the application of quad
meshing. We made a seamless parametrization integer by using the
method described in the supplement. We chose a grid resolution
that is fine enough not to compromise the mapping distortion signif-
icantly. This resolution depends on the minimal distance between
cones and features. We did not optimize the field in that respect
(e.g. performing cone collapse or relocation), which is a separate
problem. See Fig. 13 for results.

Number of cones. In Tables 3 and 4, we provide statistics for the
number of cones. At Table 3, we compare themethodswith [Bommes
et al. 2009], which smooths the field without metric consideration.
The number of cones that are added on average by each method is:
[Myles and Zorin 2012]:69%, [Diamanti et al. 2015]:73%, ours:83%,
and [Fang et al. 2018]:989%.

8.1 Parameters
Rounding threshold. In Alg. 1-3, we initialized the rounding (match-
ing and feature alignment) threshold to 0.1. Then, we increased it
in steps of 0.1 until it reached 0.5 (the max rounding error). For the
top-down variant, the threshold steps were 0.4, 0.3, 0.2, 0.1, 0. The
local estimation routine was used in the last three steps (when the
rounding threshold was ≥ 0.3 and for the top-down variant ≤ 0.2).
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Fig. 11. A gallery of our method’s results on the 15 models of our benchmark. Histograms and heat maps show the distortion 𝜏 .

After laying out a local patch of a feature edge, we used a threshold
of 2.5 for the distortion measure 𝜏 to determine if the alignment
constraint should be disabled.
Bommes et al. [2010] try to establish variable dependency for

simultaneous rounding through a heuristic. Myles and Zorin [2013]
round batches of variables where their sum of rounding error is less
than 0.5. Our approach uses rounding error threshold that increases
(or decreases) in predetermined steps. For our step choice (0.1), we
are guaranteed to have no more than 5 batches (or iterations), which
proved to be effective and is practical in terms of efficiency, which
is important since we use a costly layout step to guarantee map-
ping quality. When using a simpler distortion measure, such as
𝐿2-ARAP that requires a cheaper solution of a linear system, similar
to [Bommes et al. 2009; Myles and Zorin 2012], we can round the
matchings one-by-one, and the methods would perform similarly.

As discussed before, though, the extreme of rounding one-by-one is
not guaranteed to produce an optimal mapping. For example, results
of rounding one-by-one the matchings (without local estimation) of
the three smallest models in Table 1, minimizing 𝜏 : dancer, 𝜏 = 1.4;
robocat, failed; twirl, 𝜏 = 2.8. Compare with Table 1.

Patch size. For the local estimation (Section 5), we used all triangles
within a default Breadth First Search (BFS) level (or neighbor ring
level) to create a patch surrounding a given edge. In BFS level 1 of an
edge, we add all the faces incident to the two edge vertices. In each
following BFS level, we add the incident faces of each vertex in the
growing patch. As default, we used BFS level 5. The local estimation
routine was run for every edge with rounding error greater than
0.3. Laying out a patch took 30ms on average.
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Fig. 12. Our method’s results on 6 models with sharp features. Histograms and heat maps show the distortion 𝜏 .

For all the models in the paper, we used the default BFS level 5
except for the dilo model, where we increased the patch size to BFS
level 8 to lower the distortion further in order to compete with the
state-of-the-art (the default BFS level 5 resulted in 𝜏 = 1.9). The
influence of the BFS level can be seen in Fig. 15. While a small patch
may be less reliable, as we consider larger patches, the estimation
gets better, and the distortion is improved as a consequence until it
is stabilized.
This is one advantage of our method: on most models it runs

robustly with the default parameters, but if needed, the user can
choose from several variations and parameter settings to improve
the result: the local patch size, the rounding step size, and the round-
ing order can all be customized.
For illustration of how a different set of parameters affects the

result, see supplemental Gallery 1.

8.2 Compared Methods
In Tables 1 and 2, we compare with the state-of-the-art that targets
isometry.

Cross fields. For the relevant methods, the smoothest field was
generated using a seed constraint triangle. Given the fields (or oth-
erwise, a field was extracted from the parametrization result; see
supplement), we used the same layout optimization method that
minimizes the same target objective (instead of using the compared
method layout, which targets a different objective). That is, it would
be unfair to compare their parametrization result as is to ours since
their objective is not the same as ours (which varies according to
the selected distortion measure). For all of the methods, we used
the generated field without further processing such as cone collapse
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Fig. 13. Quad mesh generation for the models in Fig. 12.

Fig. 14. The same camera view on the parametrization as in Fig. 13.
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Fig. 15. Patch size influence. The graph shows the distortion amount 𝜏 as a
function of the BFS level for a few models.

(which may result in a better or worse field).

[Fang et al. 2018]. We used the supplied quad mesh results. To
extract the parametrization and measure the distortion, we followed
the procedure in the supplement. Since this method has a more
restrictive objective (an integer seamless parametrization vs a seam-
less parametrization for the other methods), the comparison is unfair.
Yet, we illustrate here that using this approach, it would be hard, for
example, to bound the maximal distortion as in our method. Given
the extracted parametrization, we also experimented with extracting
the field from it and creating a new layout, in the same way that we
did with the other methods. Nevertheless, in most cases, the result
still had significantly higher maximal distortion in comparison, and
we opted for showing the original mapping. The mapping mostly
preserves the shape of the squares, but not the scaling (i.e., it tends
to be more conformal). In some models, the color map is almost fully
red; see Fig. 5, 6. This is due to the 𝜏 measure, which is sensitive
to the maximal isometric distortion. That is, bad distortion in even
one small region of the map is enough to influence and scale the
optimal 𝜏 .

[Myles et al. 2014]. The method does not generate a field, but
creates an initial feasible layout for a given one (adding cones if
needed). The input fields that were used in the paper were a version
of [Bommes et al. 2009] (after some post-processing to collapse
nearby cones).

[Myles et al. 2014] allows refinement, which we do not (see sup-
plement for discussion), which can simplify impossible situations.
The amount of refinement is significant, e.g. 237,000 triangles in the
filigree result vs 100,000 in the original model.
While their mapping is guaranteed to be locally injective, in

practice there could be nearly-collapsed triangles. For example, the
distortion of their supplied mapping result for the filigree and the
twirl models is 𝜏 = 82,000 and 𝜏 = 56,000 respectively. Extracting
frames from these two mappings and feeding them to the layout
optimization that minimizes 𝜏 resulted in a failure (due to numerical
issues).
Since [Myles et al. 2014]’s solution is general, one can apply

it to any field, including ours. That is, if our method generates
parametrization with foldovers (using a distortion measure that
allows it, e.g. 𝐿∞-ARAP), then a field can be extracted from the
mapping. The field would need to be corrected (due to the foldovers),
e.g. using the matching consistency procedure in the supplement,
which guarantees a correct output field. The method in [Myles et al.
2014] can be applied to the corrected field.

8.3 Benchmark Models
Myles et al. [2014] compiled a dataset of 113 models for benchmark-
ing. We find that most of the models are too easy to distinguish
state-of-the-art methods and do not represent potential challenges
arising in the parametrization problem. From their dataset, we re-
moved all the easy models, which recent state-of-the-art methods
parametrized successfully with low distortion. We augmented these
with a few more challenging models from other sources [Zhou and
Jacobson 2016], where we consider a model challenging if one or
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Fig. 16. Using the default Alg. 2 with positive step direction on the four
models in Fig. 12 (where a different algorithm or step direction were used).
Distortion 𝜏 : casting_refined—2.7, sculpt—1.7, smooth-feature—4. This vari-
ation failed on the metatron model.

more of the state-of-the-art methods had difficulties generating a
locally injective, low distortion mapping. We ended up with a man-
ageable dataset of 15 challenging benchmark models. From Table 1,
we can see that our method generates a bijective parametrization
successfully on all the models, and the mapping, in general, has
lower distortion compared to the other methods.
In the supplemental Gallery 2, we provide results of the rest of

[Myles et al. 2014] dataset. Our method achieves maximal distortion
of 𝜏 ≤ 1.6. A comparison to [Diamanti et al. 2015] is included, where
it achieves similar low distortion on most of the models, and visually
the differences between the two methods are insignificant.

In the supplemental Gallery 1, we experimented with a different
set of parameters to decrease the runtime. The cost is one failure
and more distortion in some of the models.

8.4 Feature Alignment
There are several ways to detect sharp features, andwhen comparing
methods, it is important that they all use the same features. We
mostly detected sharp features by looking for dihedral angles greater
than 40◦ (and discarding sharp edges which created impossible
configurations).
We offer a set of 6 models to benchmark feature alignment; see

Table 2. When choosing a challenging model for benchmarking
feature alignment, one can analyze their distribution (e.g. proximity
to cones or each other), their pattern, or the number of corners
the model has, as analyzed, for example, in [Huang et al. 2008] for
the fandisk model. Instead, as before, we chose models for which
some of the candidate methods failed to generate a locally injective
parametrization with low distortion.
Our method succeeded in generating a bijective mapping for

all the models even if it did not always achieve lowest distortion.
As long as the distortion was reasonable compared to the other
methods, we opted for using the default Alg. 2. Only when the need
arose, we experimented with Alg. 3, as well as the step increment
direction of the rounding threshold (Section 6). In Fig. 16, we show
the result of only the default variation of the algorithm. Without the
challenge of feature alignment, Alg. 1 produced compelling results
without the need for variations.

8.5 Other Distortion Measures
We experimented with other distortion measures. See supplement
for a distortion measure review.

In Fig. 8, we experimented with lowering the 𝐿2-ARAP energy
(see supplement). Bommes et al. [2009] and Myles and Zorin [2012]
use this objective in the layout step, and it is inconsistent with the
objective these methods use for field design, as explained in the
introduction, and our method performs better as a consequence.
Since the distortion is not bounded, the two other methods con-

tain flips (which are not penalized). Our method is prone to flips like
the other two (since we solve for the same 𝐿2-norm-based objective
without additional constraints), but our rounding strategy by local
estimation is robust enough that the mapping result has distortion
below the foldover-free threshold (see supplement).

In Figures 9 and 10, we show minimization of the 𝐿∞-ARAP and
symmetric Dirichlet energy respectively. We used the compared
method results as initialization to the layout optimization method
that targets each energy ([Levi and Zorin 2014] and [Shtengel et al.
2017] respectively). In our method, we used each layout optimization
method in the whole pipeline.

Fig. 2 illustrates conformal distortion measure.

9 CONCLUSION
We introduced a method for seamless parametrization that formu-
lates a single problem with a single objective. This is made possible
by using domain variables.

In terms of limitations, the method is not guaranteed to produce
a locally injective mapping. Furthermore, the method parameters
determine its success, and due to the mixed-integer nature of the
problem, it is hard to determine the optimal ones. Nevertheless, a
default set of parameters is offered that works well in most cases,
and otherwise the method offers the flexibility to tweak parameters
in order to reach the desired quality.

Our method relies on a rounding strategy based on local estima-
tion. The idea of using local estimation as a rounding strategy can
be further explored:
• Rounding of seamless parametrization. This requires rounding the
cone 𝑈𝑉 coordinates as well as the translations between twin
edges. Since the rounding is usually to the nearest integer, local
estimation can be used to efficiently test the reduced options.

• Improving the cone distribution. Through efficient local estimation,
it is possible to test the effects of cone collapse or repulsion (relo-
cating cones and increasing the distance between them) before
applying them. These operations are usually necessary if one
needs to round a seamless parametrization to a coarse grid.
While we demonstrated our method on a cross field, it can be

applied to generate any 𝑛-field. Furthermore, it would be interesting
to apply these concepts to tetrahedral meshes. Also, addressing
other quad meshing attributes can be considered using the proposed
paradigm.
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