
1

D-Snake: Image Registration by
As-Similar-As-Possible Template Deformation

Zohar Levi, Craig Gotsman

Abstract —We describe a snake-type method for shape registration in 2D and 3D, by fitting a given polygonal template to an acquired
image or volume data. The snake aspires to fit itself to the data in a shape which is locally As-Similar-As-Possible (ASAP) to the
template. Our ASAP regulating force is based on the Moving Least Squares (MLS) similarity deformation. Combining this force with
the traditional internal and external forces associated with a snake leads to a powerful and robust registration algorithm, capable of
extracting precise shape information from image data.

Index Terms —Snake, Registration, MLS deformation

✦

1 INTRODUCTION

Finding a specific object within an image, with as little
human intervention as possible, has many applications.
The advent of 3D volumetric ”images” has amplified the
challenge, but led to many important applications in the
medical field.

A popular family of algorithms for edge detection is
based on deformable models, which includes the so-
called ”snake”. A snake is an active contour which
evolves under the influence of internal forces emerging
from the curve itself and external forces present in
the image data. Snakes were first proposed by Kass et
al. [1], causing deformable models to become one of
the most active and successful research areas in image
segmentation. A detailed review of all different types of
deformable models can be found in [2].

A 2D snake is a curve X(s) = [x(s), y(s)] that evolves
in the spatial domain of an image I to minimize the
energy functional

E = Eint + κEext + ηEdef

(κ and η are constant weighting factors), where the
classic internal energy is:

Eint =

∫

1

0

1

2
[α‖X ′(s)‖2 + β‖X ′′(s)‖2]ds

(α and β are constants balancing the two components),
and the classic external energy is:

Eext(x, y) = −‖∇I(x, y)‖2 ,

Edef is an additional deformation energy (∇ is the gra-
dient operator). A snake that minimizes E must satisfy
the Euler-Lagrange equation

αX ′′(s)− βX ′′′′(s)− κ∇Eext − η∇Edef = 0 ,

• Z. Levi and C. Gotsman are with the Technion - Israel Institute of
Technology.
E-mail: zoharl@cs.technion.ac.il, gotsman@cs.technion.ac.il

which can also be viewed as a force balance equation:

Fint + κFext + ηFdef = 0 . (1)

A snake is typically used for image segmentation. In this
paper we aspire to extend the snake functionality to the
more difficult task of registration. Segmentation means
just identifying a shape in an image, while registration
means capturing some of the detailed semantics of the
shape. The semantics is usually conveyed through cor-
responding points between some generic template shape,
in which these points have some semantic meaning,
and the shape extracted from the image. For example,
when analyzing a cardiac CT image, we don’t want to
capture only the general shape of a heart in the image,
rather we want to identify each individual ventricle and
valve within the heart. If these detailed features have
been marked in the template, the registration procedure
should identify them also within the CT image.

The classical snake is an evolving contour with no
special significance attached to individual points on the
contour. These points move freely, and typically there
is no special relationship between them and the data.
To achieve the registration objective we use a template
which evolves like a snake, except that the classic inter-
nal energy is augmented by an As-Similar-As-Possible
(ASAP) deformation energy. This energy regulates the
general shape of the snake to keep it locally similar to
a given template mesh, which in turn is similar to the
shape we are trying to find in the image. We call this
modified snake a D-Snake (Deformation-Snake). See Figs.
1-2 for a simple illustration of this important difference
between the classical snake and our D-Snake.

There exist a number of effective state-of-the-art al-
gorithms (e.g. [3], [4]) for registration of two 3D point
clouds under deformation. The reader might wonder
why it is not possible to simply adjust these algorithms
to deal with image data. We believe that these algorithms
would fail in an image environment. Were we dealing
with synthetic images containing clear edges, we might

2

Init Classic D-Snake

Fig. 1: Classical snake vs. D-Snake. (Left) A snake is
initialized to a spherical template attracted to data con-
sisting of 3 points, (Middle) Classical snake is greedily
attracted to the points while trying to be as smooth (flat)
as possible, (Right) Our D-Snake is also attracted to the
data, but also tries to preserve the spherical template
shape as much as possible.

Init Classic D-Snake

Fig. 2: Feature registration. (Left) Initial snake with a
number of important feature points marked in green,
and puzzle image data, (Middle) Classical snake is at-
tracted to edges while losing the identity of the feature
points, (Right) Our D-Snake is also attracted to edges
while retaining the feature points.

be able to convert the edges to a point cloud and apply
a point cloud registration algorithm. Unfortunately real-
world images don’t have a clear and concise edge map,
and are usually cluttered with outliers, noise and false
edges. The confidence level in an edge is much lower
than a point in a point cloud, making the conversion
impractical.

1.1 Contribution

This paper describes:

• A robust method for 2D/3D registration of a poly-
hedral template shape to an image.

• An operator for regulating a shape under the influ-
ence of an external data field.

2 RELATED WORK

The main drawback of the classical snake is its total
dependence on an edge ”force field” to provide the
external energy which will attract it to edges in the
image. Since the edge force field typically provides very
basic guidance - it merely points in the direction of
the nearest edge - a snake typically has a hard time
traversing through convoluted paths in a maze of edges
and noise in an image to reach its mark. As a result, the
snake suffers from two main weaknesses. The first is its

sensitivity to initialization, i.e., the initial position and
shape in the image where it starts to evolve from. The
second is the difficulty to penetrate inside concavities,
especially tunnels. The classic snake, for example, has to
be initialized near the edges, because the edge attraction
field does not cover the entire image, causing parts of
the snake to not feel any force.

As a consequence, not surprisingly, most of the prior
art on snakes is concerned with enhancing the external
energy component of the snake model, such as balloons
[5], distance potential force [6], Gradient Vector Flow
(GVF) [7], and its improvements. The balloon force, for
example, adds an expansion (or contraction) force to a
snake, usually in the normal direction. The limitations
of the balloon method are that the entire snake has to be
initialized inside the object area (or outside), and deter-
mining the amount of force to apply is a delicate issue.
Too much force will cause the snake to leak through
holes or push past the target edges. A very successful
way to extend the edge force field, which has proven
itself over the years, is the GVF method [7]. It extends
the initial generated external force field to other regions
of the image by homogeneous linear diffusion, yielding
a slowly varying vector field. One of the GVF extensions,
the Dynamic Directional Gradient Vector Flow (DDGVF),
which we take advantage of, will be elaborated on the
next section. The VFC method [8] extends the edge force
with a kernel matrix applied with a fast FFT. Although it
might be faster than GVF, in practice the extended field
contains ”corners” and behaves less naturally than GVF.

Other variations on the snake try to improve the
geometric properties of the snake curve. The B-Snake [9]
constructs the snake from B-Splines, avoiding the need
for the snake internal force. Topology is another issue.
The snake starts with an initial contour which deforms,
so cannot in general change topology. T-Snakes [10] try to
overcome this limitation by allowing the snake to split or
merge. A powerful alternative to the classical snake has
emerged over the past few years - the Level Set Method
(LSM) [11]. In this approach a 2D snake is considered the
zero level set of a three-dimensional surface. This seems
to be better suited for handling convoluted topology. In
our application we felt more comfortable working with
a snake, since the given template already determines the
snake topology. Another reason is that while LSM works
at pixel resolution, the snake provides control over the
contour vertices, which we need to manipulate with our
deformation force.

The extension of snake-based methods from 2D to 3D
poses by itself a few challenges. Besides the obvious
extra complexity of another dimension, which makes it
harder to keep the snake well-behaved (e.g. not intersect
itself), the component that maintains the discrete snake
surface at the correct level of resolution (i.e. at the correct
triangle density) is not obvious. Park et al. [12] address
these challenges with a multi-resolution version of the
snake. At each level of the image pyramid the snake is
refined until convergence.

3

A related problem addressed in the literature is image
registration. Unlike our problem which tries to register
a contour to a 2D image or a triangulated mesh to a
3D image, image registration tries to register one image
to another ”reference” image. The common approach is
usually to treat the reference image as a regular grid,
and deform this to fit the other image. Early work on
this was done by Thirion et al. [13], and more recent
work by Sykora et. al [14]. The latter uses a regulating
force somewhat similar to ours, and could benefit from
our enhancements.

We should also mention the Statistical Shape Models
(SSM) family [15] that tries to match a statistical model to
an image. Probably the best known methods in that area
are the Active Shape Models (ASM) by Cootes et al. [16].
A statistical model is constructed from a training set of
correctly annotated images or models. The snake is then
allowed to deform according to the distribution imposed
by the statistical model. The annotation is done manu-
ally, and the training set size is of the order of magnitude
of 50. Our algorithm requires only one template, and the
variations are controlled by the ASAP energy.

2.1 DDGVF

Cheng et al. [17] propose a way to squeeze more in-
formation out of the image to improve the attraction
of a snake to image edges by taking into account also
the edge orientation. More specifically, characterizing an
edge in an image by the largest intensity gradient in a
local area, the direction of the gradient is the direction
of the normal to the edge, and this can be used to guide
the snake better. After computing the edge normals in
this manner, we can decompose them to the three axes,
and a snake vertex is attracted to edges consistent with
its own normal. This is not to be confused with the
balloon method, where a vertex can advance only in the
normal direction. In the DDGVF method, a vertex moves
as usual in all directions, but is blind to edges for which
none of their normal components agrees with its own.
This way a snake can avoid a lot of noise and outliers.
It is also attracted to compatible edges inside a tunnel.

There are two drawbacks to the DDGVF method. The
first is that the boundary of the shape which we try
to capture in an image should be consistent with the
direction of the intensity gradient. This is not always
the case. For example, a lung boundary in a CT image
goes from black to white on the entire boundary, where
the black is always the interior of the lung. The liver, on
the other hand, is usually not consistent. Orienting from
inside to outside, near the lung the liver boundary goes
from grey to black, while near the kidney it goes from
grey to lighter shades. See Fig. 3. This inconsistency can
mislead the snake. The second drawback is instability.
The edge force influenced by the approximated normals
is less smooth. Consequently the snake becomes unstable
and needs a stronger internal force to prevent loops, an
extreme case of foldovers, from forming. One solution

Fig. 3: The gradient directions on the boundary of the
liver in a CT image are not consistent. When bordering
the lung the gradient points inward, while when border-
ing the kidney the gradient points outward.

to avoid snake foldovers introduces collision detection
forces [12], but this operation is quite costly. To overcome
the stability problem we usually give more weight to the
internal force to keep the snake together, but this can
severely restrict the snake expansion, preventing it from
penetrating tight corners. Our deformation force works
well with the DDGVF and improves this weak point. It
better constrains the snake trying to avoid foldovers, but
still permits it to deform more freely and naturally than
the classic tightening internal force. Fig. 4 illustrates this.

3 ALGORITHM OUTLINE

After extracting the edges from the image and con-
struction of the DDGVF, our algorithm proceeds in two
phases. In the first phase the snake is initialized to a
coarse template mesh, and this mesh evolves to capture
the basic outline of the shape based only on the defor-
mation and external forces. After convergence a second
phase takes place where the snake is gradually refined
in order to capture the finer details present in the data.
The refinement process is interleaved with a remeshing
procedure that keeps a necessary uniform distribution
of the mesh vertices. The new vertices evolve based on
the classical snake internal and external forces. See Fig.
5 for an outline of the algorithm, and Fig. 6 for a simple
synthetic example in 3D.

3.1 Evolving the snake

We will give a brief overview of how the actual snake
evolution occurs in 2D without reparameterization. The
snake contour is discretized into N ordered points,
{qi}

N
i=1

= {(xi, yi)}
N
i=1

. The snake is initialized to some
arbitrary position (we usually chose it to be the template
position), and then starts an iterative evolution process.
In each iteration, each vertex qi is moved to a new
position, which is the weighted sum of the new positions
for qi as given by each of the forces Fint, Fext, and Fdef

alone for the current time step. The reason for this is

qi(t+ 1) = qi(t) + F ,

where qi(t+1) is the new position of qi in the end of the
current iteration, qi(t) is the position from the previous
iteration, and F is some force. More specifically

qi(t+ 1) = qi(t) + Fint + κFext + ηFdef

4

Init GVF

DDGVF DDGVF

D-Snake DDGVF D-Snake

Fig. 4: 2D lung slice from CT image: (Top left) Snake
initialized to template (Top right) GVF snake result,
(Middle left) DDGVF snake result using a weak internal
force. Notice loop formations, (Middle right) DDGVF
snake result using a strong internal force. The snake
cannot penetrate the corner on the right, (Bottom left)
Our D-Snake, (Bottom middle) Zoom of (Middle right),
(Bottom right) Zoom of (Bottom left).

Fig. 5: Algorithm outline

=
1

1 + κ+ η
(qinti (t+ 1) + κqexti (t+ 1) + ηq

def
i (t+ 1))

where qinti (t + 1), qexti (t + 1), and q
def
i (t + 1) are the

positions of qi influenced by each of the forces alone.
In the appendix of [1], equations (19) and (20) give the
new position for the points that are influenced by the
internal, and a basic external force, and our Eq. (5) gives
the new position of the points influenced by the ASAP
deformation force alone.

Init
D-Snake Before Refine-
ment

Final D-Snake DDGVF

Better Init DDGVF

Fig. 6: Synthetic ”Tetris” example. (Top left) Template
of 20 vertices which serves as snake initialization. The
point cloud is a visualization of a sample of the edges
in the 3D voxel image, (Top right) Before the refinement
step the D-Snake - still with 20 vertices - scales correctly,
and fits the image well, (Middle left) Final D-snake.
Due to the deformation force, the deformation vertices
maintain their relative position in the shape throughout
the process, and correspond to their counterparts in the
template, (Middle right) DDGVF snake, initialized to the
template on (Top left), but with a necessary refinement
of additional 400 vertices, as the internal force cannot
express itself with only 20 vertices. Since the snake is
influenced by internal and external forces only, it cannot
penetrate the shape well. Even when initialized partly
inside the shape, there are no forces to attract it inside or
across tunnels, (Bottom left) A better initial positioning
of the template for DDGVF. The snake is scaled up, and
positioned such that there is a part of it inside every edge
force tunnel, (Bottom right) DDGVF, when initialized
with the better template, finally captures the shape in the
image, but fails to generate a correct correspondence.

5

4 THE ASAP D EFORMATION ENERGY

The main idea behind our algorithm is to use the As-
Similar-As-Possible (ASAP) deformation energy to regu-
late the snake. Given an image, we would like to perform
not just a simple segmentation, but a registration of
a specific template shape to the image data. This will
allow identifying features of the template in the image.
The snake is initialized to the template shape, and as it
evolves with respect to external forces, the deformation
force regulates the snake by keeping it As-Similar-As-
Possible to the template. This means that, locally, the
evolving snake is related to the template by a similarity
transformation. Let {pi}

N
i=1

be the vertices of the tem-
plate mesh, and let q = {qi}

N
i=1

be the vertices of the
snake, which is initialized to the template. The ASAP
deformation energy we minimize is:

Edef (q) =

N
∑

j=1

Dj(q),

Dj(q) = min
Tj

N
∑

i=1

wij‖Tj(pi)− qi‖
2.

The weights wij are of the form

w̃ij = ||pi − pj ||
−2α, wij =

w̃ij
∑

i w̃ij

(2)

with α being a fall-off parameter controlling how
strongly the deformation at pj is influenced by the
point pi. Note that while w̃ij are symmetric, wij are
not, because of the local normalization. We normalize
the weights, so that pj influences pi proportional to the
importance of pi in its neighborhood, and not by the
original absolute weight wij . Tj is restricted to the group
of similarity transformations of the form

Tj(x) = µRx+ t ,

where R is a rotation matrix, t is the translation compo-
nent, and µ is a positive scaling factor.

Our ASAP deformation energy was inspired by the
Moving Least Squares (MLS) deformation [18]. Given
corresponding source and target point clouds, MLS de-
forms a point x contained in the source domain using the
similarity transformation that best explains the mapping
between the source and target points in the close vicinity
of x. The weight function ensures that the deformation
focuses on the neighborhood of x. Analogously, our
energy measures the similarity between two shapes. It
computes how similar local neighborhoods are between
two shapes, and sums the differences. To measure a
neighborhood similarity, we compute at each vertex the
similarity transformation which best explains (in terms
of weighted squared distance) how the neighborhood
of a source shape is deformed to the corresponding
neighborhood in the target shape. Dj represents the local
similarity energy at vertex pj , and Edef is the sum of all
the local similarity energies. Note that in the special case

Template Snake 1 Snake 2

Fig. 7: Measuring the deformation energy between tem-
plate and snake: (Left) Template, (Middle and right)
Possible deformed snakes. Measuring the energy with
one global transformation (wij ≡ 1) favors snake 1 over
snake 2, while the weighted (by (2)) ASAP energy favors
snake 2 over snake 1.

wij ≡ 1, Edef reduces to an energy which is minimized
by a single global similarity T :

Edef (q) =
N
∑

i=1

‖T (pi)− qi‖
2, (3)

The main advantage of the local similarity energy over
the global similarity is that it favors {qi} which are an
articulated movement of {pi}. See Fig. 7 for an example.

The ASAP deformation energy by itself is not really
useful. Setting the snake vertices {qi} to any global
similarity transformation of the template vertices {pi}
would cause the energy to vanish trivially. In practice
the ASAP energy must be used in conjunction with a
number of other competing energies which would prefer
to avoid a global similarity, such as the external energy.

The external energy Eext depends on the image data,
so it is not possible to minimize it in one shot (certainly
not in closed form). It requires an iterative scheme, such
as the gradient descent method. Towards this end, we
incorporate the minimization of Edef into the snake
evolution paradigm, by reducing the energy step by step,
vertex by vertex, with a coordinate descent approach.
As in Eq. (1), we combine the different forces operating
on a vertex, the ASAP deformation force being one of
them. The external force causes the snake shape to better
fit the data, while the internal force maintains some
smoothness, and the ASAP deformation force resists and
regulates the snake shape, maintaining its resemblance
to the template shape.

Our objective then is to describe a method that min-
imizes Edef gradually, while keeping the snake at each
step similar to the template. We need to keep in mind
that the minimization process of the total energy E could
reach a local minimum due to Eext, and Edef would
probably not vanish.

4.1 Exact solution for 2D

As discussed in the previous section, in order to min-
imize Edef we use a coordinate descent approach in

6

the spirit of the basic snake evolution paradigm. At
each iteration we determine where each snake vertex
qk should move to in order to minimize Edef . Keeping
all the snake vertices fixed except qj fixed, there is an
explicit formula for the best local similarity Tj at vertex
pj [18].

Let:

p∗j =

N
∑

i=1

wijpi, q∗j =

N
∑

i=1

wijqi, p̂i = pi − p∗j ,

B
j
li = µj · wlj

(

p̂Tl
−p̂⊥T

l

)

(p̂i − p̂⊥i), (4)

µj =
1

∑

iwij p̂
T
i p̂i

,

where ⊥ is the 2D orthogonal operator (x, y)⊥ = (−y, x),
and B

j
li are 2× 2 matrices. Then

Tj(pi) =
∑

l 6=j B
j
li(ql − q∗j) + q∗j

=
∑

l 6=j B
j
li(ql − qj) + qj ,

The last equality follows from the observation that q∗j =
qj , since qj has an infinite weight. The summation over
l in this section is from 1 to N excluding j. In the last
equations l = j was omitted from the sum, due to qj −
q∗j = 0, which overrides the infinity weight.

Now that we have Tj , we may proceed to find the
solution to the normal equations ∇qkEdef = 0. Using ma-
trix calculus we differentiate each local energy according
to qk,

∇qkDj = 2
∑

i6=j

wij(g
jk
i)T (Tj(pi)− qi).

where

g
jk
i =

B
j
ki − I k = i 6= j

I −
∑

l 6=j B
j
li k = j

B
j
ki otherwise

,

leading to

∇qkDj = 2qj
∑

i6=j

wijg
jk
i (I −

∑

l 6=j

B
j
li) +

2
∑

i6=j

qi(
∑

l 6=j

wljg
jk
l B

j
il − wijg

jk
i I) .

Since {pi} are template points, they are fixed during the
snake evolution, thus B

j
li and g

jk
i are constants. Writing

∑

j ∇qkDj = 0 results in a single linear equation in qk.
We can represent this scheme which evolves a vector

of points at time t, q(t) (a column stack of x and y

coordinates of {qi}, for example), to a new position
q(t + 1), by a matrix A, which depends only on the
template p:

q(t+ 1) = Aq(t). (5)

The operator A encodes the local shape defined by {pi}
up to a similarity, and can be applied successively to any
vector q representing any other shape.

From basic numerical analysis we note that updating
q(t) iteratively (by multiplying by A) represents a Jacobi
method, which generates q(t+1) based only on q(t). This,
however, does not guarantee convergence to the correct
q, as the energy is not guaranteed to always decrease. It
updates a points position using the old positions of the
neighbors, which might have changed in the meantime,
making the calculation not as accurate as it could be,
and this will mislead the global optimization, leading to
a possible increase in energy. To apply the coordinate
descent method that would give the correct solution,
we need to update qj(t + 1) based on the vertices we
have updated so far in this iteration, qi<j(t+1), and the
vertices from the previous iteration qi>j(t). Following
the Gauss-Seidel method, if A = L + D + U is the
decomposition of A to lower triangular, diagonal, and
upper triangular matrices respectively, we have

q(t+ 1) = A2q(t), A2 = (I − L)−1(D + U).

Applying A in this manner transforms q gradually, until
it converges to a shape similar to {pi}. At each step of
the iteration we are guaranteed to decrease the energy
Edef (q).

We may control the speed of this process by using a
matrix power A3 = (A2)

m or a dampening factor A4 =
(1− λ)I + λA2, λ ∈ [0, 1].

4.2 Exact solution for 3D

The computation of the similarity transformation which
minimizes the MLS in 3D involves a SVD operation
(see Appendix), and differentiating Edef becomes more
challenging. Horn [19], [20] offers a better closed form for
the best similarity transformation, involving eigenvec-
tors instead of the SVD. However, this requires dealing
with roots of a cubic polynomial. Thus no matrix A,
analogous to the 2D case, exists. One way to alleviate
this is to linearize the 3D rotation matrix in the spirit of
[21], but then the solution would be sensitive to large
rotation angles.

Following Sorkine and Alexa [22], we used an alterna-
tive method to optimize the energy, which still guarantees
convergence. The method is iterative and alternates be-
tween two phases. In the first phase we fix the vertices
and compute optimal rotations and scaling factors. In
the second phase we fix the rotations and the scaling
factors, and optimize the vertex positions. In the second
phase, differentiating the energy with constant rotations
and scaling factors results in a set of linear equations for
the positions of the vertices {qk}:

qk = −
1

2

N
∑

i=1

[wik(µkRk(pi − p∗k)− qi)−

wki(µiRi(pk − p∗i) + qi)]

Since we use the snake paradigm, when we optimize for
a new position for one vertex, all the other vertices are
frozen.

7

4.3 Approximate solution for 2D

Using a large neighborhood in the MLS scheme can
improve the results, but also implies more computation,
thus is much slower. To accelerate the algorithm, we
describe an approximation scheme, which involves less
computation and is much faster than the exact algorithm.
Unfortunately, convergence is not guaranteed, although
if the target surface is close enough to the template,
our experiments show that the scheme converges. We
first outline the scheme in 2D. In practice, in 2D this
scheme replaces the matrix A with a different matrix,
so provides no advantage. In 3D, though, it results in a
faster algorithm.

Consider a specific vertex qj : We may decompose Edef

to its self-energy Dj and a sum of energies due to the
other vertices:

Edef = Dj +
∑

i6=j

Di

We propose to move qj , while considering only its self
energy Dj , although by doing that we might inadver-
tently increase the energy due to the other vertices.
We will give some intuition for this. The idea is to
make each local neighborhood of the snake As-Similar-
As-Possible to the template in order to converge to a
global similarity. It also conforms with our objective that
the energy function favor local neighborhoods in order
to deal correctly with articulated poses. The following
lemma suggests a way to minimize the self-energy Dj

when moving qj .
Lemma (without proof) To minimize the self-energy

Dj , the point qj should move to

q̂j = T̂j(pj), (6)

where T̂j is the similarity transformation which mini-
mizes

D̄j =
∑

i6=j

wij‖T̂j(pi)− qi‖
2.

Further development results in:

q̂j =
∑

l 6=j

B
j
lj(ql − q∗j) + q∗j ,

and this time q∗j 6= qj which does not participate in the
transformation.

4.4 Approximate solution for 3D

Extending the approximation scheme outlined in the
previous section to 3D, updating each self-energy one
at a time, is straightforward. This still requires the SVD
method for the best 3D similarity, as described in the
Appendix.

We cannot construct a linear operator to reflect the
iteration scheme as in the 2D case, since the similar-
ity transformations do not form a linear subspace of
the space of linear transformations in 3D. Still, a large
portion of the calculations for updating a vertex qj

can be pre-processed in the initialization step since the
template does not change. See Fig. 8, which illustrates
applying the ASAP approximation scheme on a mesh.
This results in perfect convergence to a global similarity
of the template.

5 REMESHING

One important attribute a snake should maintain is a
high vertex density, one that is sufficient to cover the
edge force field and penetrate into tunnels. We maintain
this property, while preserving a high quality mesh,
using a remeshing algorithm incorporating the following
four stages:

5.1 Uniform distribution

Keeping a uniform distribution of vertices across the
mesh is important for a high quality mesh and the snake
progress. A simple way to achieve this is an operation
similar to Laplacian filtering. The idea is to perform local
1-ring operations that move each vertex to the center
of its neighbors on the surface. To avoid foldovers we
first parameterize the 1-ring neighborhood (triangles) to
a convex polygon lying on a circle embedded in a 2D
plane, by arc-length placement, and move the designated
vertex to the center of the circle. We then project this
vertex back to the surface (the triangles on the 2D plane
are mapped to the mesh triangles).

5.2 Mesh connectivity

To achieve a more regular connectivity structure and
equilateral triangles, in conjunction with the previous
step we perform a Delaunay triangulation. First we parti-
tion the mesh into a number of large patches having disc
topology - a usual requirement for plane parameteriza-
tion which allows to handle models having high genus,
such as the vertebra model. To achieve this we applied
a relatively simple algorithm, which recursively splits
patches in two, as long as they are not homeomorphic to
a disc. The split is done using Breadth-First-Search (BFS),
which marks triangles belonging to one group until it
covers half of the patch size. The remaining unmarked
triangles then belong to the other group.

In the next step we parameterize each of the patches
to the plane using standard parameterization techniques
with mean-value coordinates [23]. The mesh boundary
is mapped to a circle, and a linear system is solved for
the positions of the interior vertices.

Finally we perform Delaunay triangulation on the
parameterized vertices in the plane, and adopt this new
connectivity structure on the original 3D points.

5.3 Refinement

The refinement process is relatively straightforward. For
each triangle, which has an edge longer than a certain
threshold, a vertex is added in its barycenter, and the

8

Fig. 8: A few snapshots of applying the 3D approximation scheme on a D-Snake having the shape of a bar on the
left, evolving into the template having a ’C’ shape on the right. The graph shows the convergence of the ASAP
energy to zero.

triangle is subdivided to three triangles. We found that
there is no need for anything more sophisticated, since
as the snake continues to evolve, the regularity step
improves the triangulation quality. See top row of Fig.
9.

5.4 Simplification

After the refinement step and the uniform parame-
terization, islands of triangles which are overly small
may form, which may be redundant. Although an over-
sampled surface won’t harm the smoothness and shape
approximation qualities of the surface, the runtime of
a single iteration depends on the mesh complexity, and
an oversized mesh can slow it down dramatically. To
address this problem, we take two steps. One is to limit
the minimal edge size of the mesh to the size of a voxel
edge. The second is to collapse triangles, which are too
small in relation to their curvature [24].

6 ALGORITHM FLOW

The D-Snake is initialized to the template, preferably a
coarse mesh. Starting with a relatively low resolution
mesh helps the D-Snake preserve the template shape,
capture better the general shape of the object in the
image, and converge rapidly. Doing the same using
just the traditional internal force could cause severe
malformations in the result. See Figs. 6, 9, 10.

After the D-Snake evolves to a stable configuration,
we start to refine it by gradually lowering the minimum
edge length threshold at each iteration. This causes
triangles to subdivide, adding new vertices to the mesh.
These new vertices continue to evolve based only on the
classic internal force. As a result, the D-Snake reaches its
highest resolution gradually. This is better than jumping
to full resolution in one iteration, since the new vertices
would be quite independent, and this could lead to large
fissures in places where the vertices are attracted to
the edges. By refining the mesh gradually we spread
the shape regularization influence originating in the
template vertices. From the point we start to refine the D-
Snake, we apply the parameterization and simplification

steps every few iterations. See the accompanying video
for a visual illustration of the complete process.

7 IMPLEMENTATION DETAILS

Unlike the 2D case, in the 3D case each vertex is treated
separately during the iterations. Yet a large portion of
the process can still be precomputed, since the template
is fixed. Thus the computation per vertex is reduced to
a multiplication of a matrix whose dimension is three
times that of the neighborhood size, and a SVD of a 3×3
matrix.

We used the following parameters for the lung, and
similar values for the other models: α = 0.55, κ = 0.4,
η = 0.5.

8 EXPERIMENTAL RESULTS

Most of the calculations were performed mainly in MAT-
LAB with no special optimizations, running on an Intel
T9400 2.53GHz laptop. For the computational geometry
algorithms we used CGAL [25]. All 3D examples were
generated with the approximate algorithm, as described
in 4.4. As an example we will give the run times
for the input volumetric image of a left human lung
having resolution 230 × 300 × 80. The preprocessing
step involves construction of the DDGVF map, which
takes 40 seconds. The D-Snake was initialized to the
template consisting of 309 vertices, and this increased,
after 500 iterations, to 7,000 vertices. 300 iterations took
2.5 minutes, while 500 iterations took 16 minutes. The
quality of the final mesh is high, and the triangulation
is almost fully regular. See Fig. 9 top right.

Since the image contains significant noise, the D-Snake
is sensitive to initialization, and the closer to the edges
it is initialized - the better. The ASAP deformation force
also helps to overcome that. In Fig. 6, 9, 10 we compare
the DDGVF snake which uses only the standard internal
force, and our D-Snake which uses the ASAP deforma-
tion force. The bronchi in the lung create false edges
which are closer to the top of the D-Snake than to the
upper wall of the lung. Thus the D-Snake is attracted to
them first. The ASAP deformation force better guides the

9

Init D-Snake

DDGVF DDGVF with smooth init

Fig. 9: Registration to a CT image of a left human lung.
(Top left) Template lung, which serves to initialize the
snake process. The point cloud gives a rough visualiza-
tion of the image edges position, (Top right) D-Snake
after 500 iterations, (Bottom left) State-of-the-art DDGVF
snake. The initial template mesh is too coarse, so the
internal force shrinks the shape, (Bottom right) A snake
using the same forces as (Bottom left), but initialized
to a refined version of the template to make it easier
for the internal force to retain some shape. Nonetheless,
as opposed to D-Snake which has deformation vertices
that maintain the shape and push it beyond noisy edges,
DDGVF cannot pass the noisy edges created by the
bronchi in the lung.

D-Snake, forcing it to expand upwards in order to keep
its shape As-Similar-As-Possible to the template. Fig. 19
compares two slices of the final snake to the template.
Fig. 20 shows the color-coded correspondence between
some of the template vertices and their counterparts in
the final D-Snake after the deformation process.

We also compared the D-Snake to the GVF snake
under conditions of outliers, noise, and perturbation.
We performed the tests on a synthetic 3D image of
a star, having dimensions 80x80x80; see Fig. 13-18. In
this experiment we compared the D-Snake to the GVF
snake, since the latter performed better than the DDGVF
snake, probably due to the normals smoothness which

Init D-Snake

Smooth Init DDGVF

Fig. 10: CT scan of the Stanford Bunny. (Top left) Tem-
plate containing 358 vertices, which serves as initializa-
tion for snake. The template is a simplified version of the
original model which underwent light anisotropic scal-
ing and ear twisting, (Top right) Final D-Snake after 500
iterations, (Bottom left) Refined version of the template
(one level of subdivision). (Bottom right) DDGVF snake
result when using bottom left refined template.

contributes to instability in the DDGVF snake. In order
for the test to be objective, we used the same GVF
external force in the D-Snake. As in the rest of the paper,
both snakes start with the same shape - the template
of the D-Snake - where the GVF snake is refined from
26 vertices to 386 vertices before the first iteration. As
we discussed previously, this refinement step, performed
during initialization, is crucial for the derivative cal-
culation and stability of snakes that relies only on the
internal force. We used α = 0.5 and κ = 0.2 for the GVF
snake. Using a larger κ results in a stronger external
force, and the GVF snake then becomes unstable and
intersects itself. On the other hand using a smaller κ

results in a stronger internal force, which limits the snake
flexibility, and prevents it from reaching all the corners
of the star. We determined empirically that κ = 0.2 is
the best compromise. For D-Snake we used κ = 0.1
and η = 0.5. For the D-Snake we show only the result
of the first important step, where the snake fits itself
to the general shape of the image, before starting the
refinement process.

As in the rest of the paper, both snakes were initialized

10

Init D-Snake

Fig. 11: Vertebra. (Left) D-Snake is initialized to a coarse
template (539 vertices). (Right) Final D-Snake after 300
iterations (two minutes) preserves topology and obtains
a good registration.

to the same position shown in Fig. 13. Like before,
the cloud of points in the bottom-left image is a clean
illustration of the shape in the image, which is based
on the edges present in the image. Fig. 14 shows the
result of the two snakes on a clean image. GVF succeeds
in reaching all the corners, and except for a few artifacts
the resulting mesh is reasonable. The corners of the GVF
snake are rounded due to the internal force, while D-
Snake allows sharp corners for deformation vertices.

In Fig. 15 we added 1% of random strong outliers to
the image, such that the images still stay binary (with
two colors). These few outliers disrupt the external force
field of the GVF and challenge the snake. In Fig. 16 we
see that 1% of outliers attract the GVF snake, and prevent
it from detecting the entire shape. We can also see that
the strong external force that we used for the GVF snake,
allowing it to stretch and spread better, was actually too
strong, and more artifacts can be seen. D-Snake was able
to overcome 1% outliers, but failed for 3% outliers. Due
to a strong deformation force, D-Snake failed gracefully
and still retained a star shape.

In Fig. 17 we tested the snakes on images with Addi-
tive White Gaussian Noise (AWGN). The source image
is an 8-bit (0-255) grayscale, with background value
170 and foreground value 85. Addition of AWGN with
σ = 30 confuses the GVF snake, while D-Snake succeeds
for σ = 30, but fails for σ = 35. In Fig. 18 we perturbed
the pixels of the star image. Each foreground pixel was

Fig. 12: Slices of the vertebra image with the initial
(template) snake in yellow, and the final D-Snake in red.

perturbed in a random direction by a random distance
up to some radius r. The resulting image remains binary.
The GVF snake fails for r = 2, while D-Snake succeeds
and fails only for r = 4.

The video accompanying this paper illustrates the var-
ious stages of our registration algorithm and its results.

9 DISCUSSION AND CONCLUSIONS

We have presented the D-Snake - a method which
incorporates space deformation techniques from com-
puter graphics and snake-based evolution ideas from
computer vision to solve the problem of mesh regis-
tration to 3D volume data. We introduced the MLS-
based similarity operator for regulating a shape in a
dynamic environment, and showed how it helps the
snake to better capture a shape defined by a dataset
while preserving features present in the template.

While very effective, the MLS-based deformation en-
ergy used in our D-Snake framework can be replaced by

11

Source Init

Init Init

Fig. 13: Star initialization. (Top left) A middle slice from
the source image, (Top right) The slice position in space,
(Bottom left) Initialization for both snakes , (Bottom
right) A slice from the previous image.

GVF GVF

D-Snake D-Snake

Fig. 14: A clean star. (Top) GVF result, (Bottom) D-Snake
result.

Source

1% Outliers

Fig. 15: Star GVF field. (Top) A slice from the GVF field
of a clean image, (Bottom) A slice from the GVF field of
an image with 1% outliers.

12

GVF GVF

D-Snake D-Snake

D-Snake D-Snake

Fig. 16: Star with outliers. (Top) GVF snake result for
1% outliers, (Middle) D-Snake result for 1% outliers,
(Bottom) D-Snake result for 3% outliers.

other forms of deformation energy. The main require-
ment from the energy is that it is based on positional
data only. Moreover it should be possible to minimize
the deformation energy point-wise, avoiding global op-
timization such as that used in Laplacian surface editing
[26] or mean-value encoding [27] used by several sketch-
base modeling techniques [28]–[30]. It should be noted
that although [26] is fast, it uses a linearized version of
the rotation operator, which can be sensitive to large
rotations. In the method of Kraevoy et al. [27], vertex
coordinates are encoded by decomposition into a tan-
gential component computed in the projection plane and
a normal component based on the vertex offset from the
plane, which is rotation-invariant. This seems to be quite
effective, although the resulting mean-value weighted

GVF GVF

D-Snake D-Snake

D-Snake D-Snake

Fig. 17: Star with noise. (Top) GVF snake results for σ =
30, (Middle) D-Snake results for σ = 30, (Bottom) D-
Snake results for σ = 35.

function requires a non-linear optimization.

We mentioned in the related work the ASM, which
builds a statistical model from a training set. If one has
such a training set at his disposal, one can then build
a shape space [31] based on the ASAP energy, which
guides the snake deformation even better.

A few words about initialization. A snake in general is
quite sensitive to the initial positioning of the template
relative to the dataset. For simple examples such as
Fig. 6, the extra deformation force of D-Snake alleviated
this sensitivity somewhat, but for complex data sets
such as the lung (Fig. 9), a good initialization is crucial.
Currently the degrees of freedom for the initial position
of the template are Euclidean transformations. However,
our D-Snake permits the medical professional to specify

13

GVF GVF

D-Snake D-Snake

D-Snake D-Snake

Fig. 18: Star with perturbations. (Top) GVF snake result
on r = 2, (Middle) D-Snake result on r = 2, (Bottom)
D-Snake result on r = 4.

Fig. 19: Two slices of the lung image with the initial
(template) snake in yellow, and the final D-Snake in red.

Fig. 20: Color-coded correspondence between (Left) tem-
plate and (Right) final D-Snake.

14

better guidance for the snake by placing markers. Since
the deformation vertices have semantics, markers can be
placed inside the 3D image to guide important features
to their exact location. We avoided use of markers in
our experiments in order to keep the D-Snake on equal
footing with the classical snake.

REFERENCES

[1] M. Kass, A. Witkin, and D. Terzopoulos, “Snakes: Active contour
models,” J. of Computer Vision, vol. 1, no. 4, pp. 321–331, 1988.

[2] C. Xu, D. Pham, and J. Prince, “Image segmentation using de-
formable models,” in Handbook of Medical Imaging, vol. 2, 2000,
pp. 129–174.

[3] Q.-X. Huang, B. Adams, M. Wicke, and L. J. Guibas, “Non-rigid
registration under isometric deformations.” Comput. Graph. Forum,
vol. 27, no. 5, pp. 1449–1457, 2008.

[4] H. Li, R. W. Sumner, and M. Pauly, “Global correspondence
optimization for non-rigid registration of depth scans.” Comput.
Graph. Forum, vol. 27, no. 5, pp. 1421–1430, 2008.

[5] L. Cohen, “On active contour models and balloons,” Computer
Vision, Graphics, and Image Processing. Image Understanding, vol. 53,
no. 2, pp. 211–218, 1991.

[6] L. Cohen and I. Cohen, “Finite-element methods for active con-
tour models and balloons for 2-D and 3-D images,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 15, no. 11, pp. 1131–1147, 1993.

[7] C. Xu and J. Prince, “Snakes, shapes, and gradient vector flow,”
IEEE Trans. on Image Processing, vol. 7, no. 3, pp. 359–369, 1998.

[8] B. Li and S. Acton, “Active contour external force using vector
field convolution for image segmentation,” IEEE Trans. on Image
Processing, vol. 16, no. 8, pp. 2096–2106, 2007.

[9] Y. Wang and E.-K. Teoh, “Object contour extraction using adaptive
B-snake model,” J. Math. Imaging Vis., vol. 24, no. 3, pp. 295–306,
2006.

[10] T. Mcinerney and D. Terzopoulos, “T-snakes: Topology adaptive
snakes,” in Medical Image Analysis, 1999, pp. 840–845.

[11] S. Osher and J. Sethian, “Fronts propagating with curvature
dependent speed: Algorithms based on Hamilton-Jacobi formu-
lations,” J. of Comp. Physics, vol. 79, no. 1, pp. 12–49, 1988.

[12] J.-Y. Park, T. McInerney, D. Terzopoulos, and M.-H. Kim, “A non-
self-intersecting adaptive deformable surface for complex bound-
ary extraction from volumetric images,” Computers & Graphics,
vol. 25, no. 3, pp. 421–440, 2001.

[13] J.-P. Thirion, “Fast non-rigid matching of 3D medical images,”
INRIA, Research Report RR-2547, 1995.

[14] D. Sýkora, J. Dingliana, and S. Collins, “As-rigid-as-possible
image registration for hand-drawn cartoon animations,” in Proc.
of Non-Photorealistic Animation and Rendering, 2009, pp. 25–33.

[15] T. Heimann, Statistical Shape Models for 3D Medical Image Segmen-
tation. VDM Verlag, 2009.

[16] T. F. Cootes, C. J. Taylor, D. H. Cooper, and J. Graham, “Active
shape models their training and application,” Comput. Vis. Image
Underst., vol. 61, no. 1, pp. 38–59, Jan. 1995.

[17] J. Cheng and S. Foo, “Dynamic directional gradient vector flow
for snakes,” IEEE Trans. on Image Processing, vol. 15, no. 6, pp.
1563–1571, 2006.

[18] S. Schaefer, T. McPhail, and J. Warren, “Image deformation using
moving least squares,” ACM Trans. Graph., vol. 25, no. 3, pp. 533–
540, 2006.

[19] B. K. P. Horn, “Closed-form solution of absolute orientation using
unit quaternions,” J. of the Optical Society of America, vol. 4, no. 4,
pp. 629–642, 1987.

[20] B. K. P. Horn, H. Hilden, and S. Negahdaripour, “Closed-form
solution of absolute orientation using orthonormal matrices,” J.
of the Optical Society of America, vol. 5, no. 7, pp. 1127–1135, 1988.

[21] N. J. Mitra, N. Gelfand, H. Pottmann, and L. Guibas, “Registration
of point cloud data from a geometric optimization perspective,”
in Proc. Symposium on Geometry Processing, 2004, pp. 23–31.

[22] O. Sorkine and M. Alexa, “As-rigid-as-possible surface model-
ing,” in Proc. Symp. on Geometry Processing, 2007, pp. 109–116.

[23] M. Floater, “Mean value coordinates,” Comp. Aided Geometric
Design, vol. 20, pp. 19–27, 2003.

[24] M. Meyer, M. Desbrun, P. Schro”der, and A. H. Barr, “Discrete
differential-geometry operators for triangulated 2-manifolds,” in
Visualization and mathematics. Springer-Verlag, 2002, pp. 35–57.

[25] “CGAL, Computational Geometry Algorithms Library,”
http://www.cgal.org.

[26] O. Sorkine, D. Cohen-Or, Y. Lipman, M. Alexa, C. Rössl, and
H.-P. Seidel, “Laplacian surface editing,” in Proc. Symposium on
Geometry Processing, 2004, pp. 175–184.

[27] V. Kraevoy and A. Sheffer, “Mean-value geometry encoding,” Intl.
J. Shape Modeling, vol. 12, no. 1, pp. 29–46, 2006.

[28] A. Nealen, O. Sorkine, M. Alexa, and D. Cohen-Or, “A sketch-
based interface for detail-preserving mesh editing,” ACM Trans.
Graph., vol. 24, no. 3, pp. 1142–1147, 2005.

[29] J. Zimmermann, A. Nealen, and M. Alexa, “Silsketch: automated
sketch-based editing of surface meshes,” in Proc. Symp. on Sketch-
based Interfaces and Modeling, 2007, pp. 23–30.

[30] V. Kraevoy, A. Sheffer, and M. van de Panne, “Modeling from
contour drawings,” in Proc. Symp. on Sketch-Based Interfaces and
Modeling, 2009, pp. 37–44.

[31] R. W. Sumner, M. Zwicker, C. Gotsman, and J. Popović, “Mesh-
based inverse kinematics,” ACM Trans. Graph., vol. 24, no. 3, pp.
488–495, Jul. 2005.

Zohar Levi received his MSc in computer sci-
ence from Tel-Aviv University, Israel, in 2007.
He is currently pursuing the PhD degree at the
Faculty of Computer Science at the Technion
at Haifa, Israel. His research interests include
computer graphics and computer vision.

Craig Gotsman received a PhD in computer sci-
ence from the Hebrew University of Jerusalem.
Since 1991, he has been on the Faculty of Com-
puter Science at the Technion at Haifa, Israel,
where he co-founded the Center for Graphics
and Geometric Computing (CGGC). His main
research interests are computer graphics, geom-
etry processing and geometric modeling. He is
currently the Founding Director of the Technion-
Cornell Innovation Institute (TCII) at the Cornell-
NYC Tech campus.

1

APPENDIX
THE 3D MLS SIMILARITY TRANSFORMATION

For a given source point cloud {pi}, a target point
cloud {qi}, and a given point v we seek the similarity
transformation T which minimizes

∑

i

wi‖T (pi)− qi‖
2, wi =

1

‖pi − v‖2
.

Let:
p∗ =

∑

i

wijpi, q∗ =
∑

i

wijqi,

p̂i = pi − p∗, q̂i = qi − q∗.

As described in [1], if (by performing SVD)

UΛV T =
∑

i

wip̂iq̂
T
i ,

then

T (x) = M(x− p∗) + q∗, M = µV UT

µ = trace(Λ)/trace(PTP), P = (
√
w1p̂1...

√
wnp̂n).

(P is a 3×n matrix). To avoid reflection solutions (having
negative determinant), see the modification described in
[2]. Alternative solutions can be found in [3]–[5].

REFERENCES

[1] Y. Zhu and S. Gortler, “3d deformation using moving least
squares.” Harvard Univ.: TR-10-07, Tech. Rep., 2007.

[2] O. Sorkine, “Least-squares rigid motion using svd,” New-York
University, Tech. Rep., 2009.

[3] B. K. P. Horn, “Closed-form solution of absolute orientation using
unit quaternions,” J. of the Optical Society of America, vol. 4, no. 4,
pp. 629–642, 1987.

[4] B. K. P. Horn, H. Hilden, and S. Negahdaripour, “Closed-form
solution of absolute orientation using orthonormal matrices,” J. of
the Optical Society of America, vol. 5, no. 7, pp. 1127–1135, 1988.

[5] A. Cuno, C. Esperanca, A. Oliveira, and C. P. Roma, “3D as-rigid-
as-possible deformations using MLS,” in Proc. of Computer Graphics
International Conference, 2007.

	dsnake
	dsnake_appendix

