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Abstract

Incompressibility is a fundamental condition in most fluid models. Accumulation of simulation errors violates it and causes fluid
volume loss. Prior work has proposed correction methods to combat this drift, but they remain approximate and can fail in extreme
scenarios. We present a particle-in-cell method that strictly enforces a grid-based definition of discrete incompressibility at every
time step.

We formulate a linear programming (LP) problem that bounds the number of particles that end up in each grid cell. To scale this
to large 3D domains, we introduce a narrow-band variant with specialized band-interface constraints to ensure volume preservation.
Further acceleration is achieved by simplifying the problem and adding a band-specific correction step that is formulated as a
minimum-cost flow problem (MCFP).

We also address coupling with moving solids by incorporating obstacle-aware penalties directly into our optimization. In extreme
test scenes, we demonstrate strict volume preservation and robust behavior where state-of-the-art methods exhibit noticeable volume

drift or artifacts.

Keywords: fluid simulation, incompressibility, discrete incompressibility, linear programming, minimum-cost flow

1. Introduction

Fluids exhibit rich, complex behaviors, and faithfully simulat-
ing them has been an active area of research in computer graph-
ics to improve the realism of animations of a wide variety of
materials. Incompressibility is a fundamental condition in a
fluid model, and it is expressed via a divergence-free constraint,
which leads to volume conservation. The constraint restricts
instantaneous movements of particles, and it has no long-term
view of the fluid during a simulation. Specifically, the PDEs
in eq. (1) describe the flow of the fluid, in terms of velocity,
as an evolution of a system during an infinitesimal time step.
The movement of the fluid during the time step is restricted to
be divergence-free. However, inaccuracies and numerical er-
rors accumulate over time and become pronounced. Nothing
accounts for the total change over time in the fluid’s volume
from its initial state because the preservation applies only to the
immediate change that occurs over a time step.

To limit this drift, prior work has introduced correction meth-
ods ranging from improving particle spacing [1] and enforcing
a stricter density correction via an additional solution of a Pois-
son equation [15] to treating particles as volume parcels with
prescribed volume [26]. Despite their strengths, these correc-

tion methods remain imperfect—subject to numerical inaccuracies

and can fail in challenging scenarios. The common approach
is to gradually—over a few time steps—remedy volume error
by adjusting particle positions. Until this process converges—
assuming no new errors arise—the fluid in its current state suf-
fers from volume loss, often producing visible artifacts. Worse,
the simulation can enter an unrecoverable state, where volume
error cannot be rectified. We illustrate these drawbacks in a few
scenes in section 8.1.

Our approach builds on the PIC/FLIP hybrid framework [5],
which represents fluids with both an Eulerian grid and Lagrangian
particles. We enforce volume preservation by defining a grid-
based discrete incompressibility: particles are confined to cells,
and each cell’s particle count is strictly bounded at every time
step.

To do so, we first tackle how to measure volume and cast in-
compressibility across these two representations. In section 4,
we define discrete incompressibility via per-cell particle occu-
pancy. We then insert a correction pass into the FLIP pipeline
(section 3) that restores this property at each time step. By re-
stricting particle movements to a fixed set of neighboring cells
(section 5), we recast the correction as an integer linear pro-
gramming (ILP) problem with hard constraints on per-cell oc-
cupancy, guaranteeing exact incompressibility.

To improve running time, we show that the ILP can be re-
laxed to a linear programming (LP) problem. This results in
an optimization problem with smooth variables that still en-
forces integer constraints on the number of particles per cell.
Nevertheless, this formulation does not scale well, and running
time can be an issue even for moderate-sized 3D grids. We of-
fer a variant of the (narrow) band method [8], tailored to our

_ approach to preserving incompressibility (section 6). This ap-

proach requires monitoring the number of particles that go into
and out of the band region. This is achieved via the formula-
tion of an additional band-specific constraint (section 6.1) that
restricts particle movements near the band interface.

To further accelerate the method, we propose two faster vari-
ants that restrict particle movements into and out of the band.
Both variants first solve the LP as is—without the additional
band constraint—producing an easier problem that is faster to
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Figure 1: A large box is dropped into water. For FLIP [37] and IDP [15], particles at the bottom of the tank do not manage to clear the path quickly enough, and
they become trapped inside the solid box, causing significant volume loss. The volume range over all time steps is indicated below each image.

solve. This is followed by a second specialized step to correct
the band interface and deeper parts of the fluid. The first vari-
ant solves the LP a second time but with a shorter one-way band
constraint (section 6.2), reducing running time.

The second variant (section 6.3) models the fluid as a flow
in a discrete graph. Grid cells are treated as graph vertices, and
particle movements are treated as graph edges. Based on this
graph representation, we formulate a minimum-cost flow prob-
lem (MCFP) and employ a Dijkstra-based solver (section 6.3).
Overall, while solving the LP does not scale well, this fastest
variant of the band method achieves practical performance on
moderate-sized 3D grids (table 2).

Coupling with solids is a fundamental challenge, and we
address it within our incompressibility-preserving framework
(section 7). In our evaluation, we devised extreme scenarios
(section 8.1) that highlight our method’s advantage over the
state of the art. One aspect that we show is that gradual cor-
rection over time, a property that prior works have in common,
may not be adequate in certain scenarios: There may not be
an opportunity to correct the fluid after an obstacle moves. By
enforcing incompressibility at each time step, our approach re-
mains robust even in these cases.

2. Related Work

For background on grid-based fluid simulation, see [5]. We
will focus our review of prior work on methods that are related
to volume preservation.

Kim et al. [13] simulate bubbles using the level-set method.
They track volume changes of each connected region and com-
pensate for errors via divergence control. Lentine et al. [16]
augment the level-set function with an advected color function

to improve volume preservation.

Smoothed-particle hydrodynamics (SPH) [14] takes a purely
Lagrangian view, representing fluids with particles. Simple,
intuitive methods such as [22]—reminiscent of the boids al-
gorithm [27]—apply local rules to each particle based on its
neighborhood, resulting in emergent global behavior. Macklin
and Miiller [20] embed an iterative density correction within
position-based dynamics [23], enforcing incompressibility via
per-particle density constraints. The method remains stable at
large time steps and adds an artificial pressure term to pre-
vent clustering. Bender and Koschier [4] combine two pres-
sure solvers, one enforcing a divergence-free velocity field and
the other a constant-density condition. Band et al. [2] improve
implicit incompressible SPH (IISPH) [11] by enforcing a con-
sistent pressure gradient at boundary samples through an alter-
native discretization of the pressure equation. In a hybrid SPH
and particle level set method, Losasso et al. [19] proposed a
local volume correction that adds a mass-conservation-derived
term to the Poisson equation, discouraging overly dense parti-
cle clusters in localized fluid volumes. Takahashi and Lin [33]
simulate viscous materials with strong two-way coupling with
solids. They apply position correction based on density con-
straints.

Hybrid schemes based on the particle-in-cell (PIC) and fluid-
implicit-particle (FLIP) methods [37] use a dual view combin-
ing a grid and particles for fluid representation. This approach
parallels the material point method (MPM) [12], which was
used to simulate a larger variety of materials, including those
described by elasto-plastic constitutive models. Ando, Thurey,
and Tsuruno [1] detect and preserve thin fluid sheets, which are
reconstructed using anisotropic kernels. An anisotropic posi-



tion correction is performed for even particle distribution. Um,
Baek, and Han [35] apply sub-grid particle correction for im-
proved particle distribution. The band method [8] keeps parti-
cles only within a narrow band of the liquid surface for perfor-
mance. Sato et al. [29] extend the band method with particle
correction based on [1] to better distribute particles near the
surface.

From the mass conservation law, Kugelstadt et al. [15] (IDP)
derive a pressure Poisson equation which takes density devia-
tion into account. They add a density correction step—solving
an extra Poisson equation—to recover fluid volume. Density
correction was previously performed using the so-called uni-
lateral incompressibility constraint, which was applied to free-
flowing granular materials [24] and splashing liquids [9].

The power particles method [7] treats particles as fixed-volume
sites and partitions the fluid domain via a power diagram. Pre-
scribed particle volumes enable precise fluid-volume control
and improve distribution. Power PIC [26] boosts performance
by recasting [7] as a transportation problem solved efficiently
with Sinkhorn’s iterative algorithm. In two-phase simulations,
an estimated surface provides an air-occupancy baseline for slack-
air variables, which fill gaps between prescribed particle vol-
ume and cell volume. Lévy [17] also employ power diagrams
with transport formulations. Zhai et al. [36] implement power
particles on the GPU. Li et al. [18] use particle trajectories to
establish flow maps and tailor path integrals of physical quan-
tities to reformulate the Poisson problem, sharing implementa-
tion similarities with the power particles method.

Enhancing simulation accuracy mitigates the problem and
assists in volume preservation by reducing errors that cause vol-
ume variation up front. For example, improving the velocity
field interpolation can reduce errors [6, 31, 28]. Qiu, Yu, and
Fedkiw [25] add pressure degrees of freedom onto surfaces of
rigid bodies to improve solid—fluid coupling in thin gaps that
are smaller than the grid resolution. Although improving simu-
lation accuracy reduces the need for correction methods in some
scenes, discretization errors can still accumulate significantly in
others, necessitating correction.

Related lattice-based approaches such as the Lattice-Boltzmann

Method (LBM) [21] also propagate (virtual) particles along fixed
neighbor links. However, LBM evolves mesoscopic distribu-
tion functions via local streaming and collision rules to recover
continuum fluid behavior, whereas our method performs a de-
terministic global optimization over discrete particle movements
to enforce incompressibility and placement constraints (see sec-
tion 5).

3. Background

We model a fluid on a domain Q C R?, d € {2,3}, using the
Euler equations for inviscid, incompressible flows:

(1a)
(1b)

Du

%y
Y p+f
Vu=0

where u, f € R? and p,p € R denote velocity, external forces,
pressure, and density. % denotes the material derivative. Equa-

tion (1b) enforces a divergence-free velocity field, ensuring in-
compressibility.

The FLIP method is a hybrid discretization method that com-
bines the Eulerian and Lagrangian views [5]. The domain is
discretized with a regular (square or cubic) grid, and the fluid
is represented by particles. The FLIP algorithm alternates be-
tween the views, solving for pressure on the grid and advect-
ing quantities via particles. Discretization inaccuracies accu-
mulate over time, causing visible volume change; a correction
step is therefore required to conserve volume—ideally keeping
the fluid’s volume constant throughout the simulation. The al-
gorithm is listed in alg. 1 for a single time step. The optional

Algorithm 1: One time step of the FLIP method

1 Transfer velocity from particles to grid // particles
are at x

2 Apply external forces to grid

3 Project velocity onto divergence-free fields // solve
for pressure

4 Transfer velocity from grid to particles

5 Advect particles //

6 Correct particle positions // particles are at x

particles are at X

correction step is omitted from the original FLIP method; IDP
and our method implement it differently.

4. Discrete Incompressibility

We propose a definition for discrete incompressibility based on
particle occupancy within the grid. We define discrete density
as the number of particles in a grid cell, and we denote its units
by ppc, which stands for particles per cell. We initially pro-
pose the following simple condition for discrete incompress-
ibility, which we will relax in section 4.1 for a smoother fluid
flow: Each fluid cell keeps a constant number it € Z of particles
throughout the simulation. u is given, and it is usually based on
the initial fluid state. Typically, weuse y =4 in2D and u =8
in 3D.

Preserving this condition is performed in the correction step
described below, starting with notation.

Definition 1 (cell markings). Let € be the set of grid cells that
cover the domain Q. We associate markings with grid cells;
the markings describe their characteristics. Each marking has
a subset of cells that are marked with it. Initially, we use the
disjoint subsets Conpry, Csotia; and Chuia to mark cells that are
empty, part of a solid, or contain fluid.

Definition 2 (a cell’s particles). For each cell c, we define a set
Ye of the indices of the particles that are in the cell.

Given a set of n particles and their positions £ € Q" after
advection, we would like to solve for new particle positions
x € Q" that are close to X but preserve incompressibility. We
will refer to X as ideal positions. We define a cost function for
closeness that penalizes the distance between two points ¢, r €
Q:

Oovj (¢,7) = llg—rl5 -



This leads to the following problem:

n

II}Cin Z Oobj (xj,)?j) (2a)
j=1

st [Xl=n, V€ G (2b)
Y| <0, Ve € Cotia (20)

where x;,%; € Q are the new and ideal positions of the j-th
particle, and |y,| denotes the number of particles in cell ¢. The
sets y are determined by x (which we are solving for), i.e., if x;
is within cell ¢, then 7}, will contain the j-th particle.

Cell markings Gempty and Ghuig are also determined by x. On
the other hand, cell markings %;jiq are determined by objects
in the scene (set by the user), and eq. (2c) ensures that those
marked cells do not contain particles. Gempty, by contrast, does
not require a constraint, since it is determined by particle posi-
tions. That is, solids in the scene are set by the user, and parti-
cles must avoid them. The rest of the cells either do or do not
contain particles and are marked as fluid or empty accordingly.
Any cell ¢ € Gempy automatically satisfies the incompressibility
constraints because its particle count is zero: |}.| = 0. There-
fore, no additional constraint is imposed on cells in Gempty-

While the problem in eq. (2) clearly expresses what we want,
it is still unclear how to implement it. There is the challenge of
connecting particle positions x, which we are solving for, to the
sets ¥, which relate a particle to the cell that contains it. The
constraints eq. (2b) and eq. (2c) are implicitly conditional—
they depend on whether the j-th particle ends up in cell c—and
it is still unclear how to write them as a canonical optimization
problem. This will be addressed in section 5, but first we will
improve the model for smoother fluid movement.

4.1. Surface and Bubbles

The discrete incompressibility condition in the previous section
is too restrictive, and it forces the fluid to propagate rigidly. We
will relax this condition in a reasonable way to enable smooth
movement of the fluid by allowing a particle on the fringe of
the fluid to explore by itself a neighboring empty cell.

We will use two types of neighborhoods for a grid cell. The

Figure 2: The surface (green cells) of a breaking wave (a) closes upon itself,
creating an air pocket (b). The air pocket shrinks (c) until surface cells no longer
have empty neighbors and become inner cells (d). These former surface cells
may have fewer than u particles, and in such a case we say that they contain air
bubbles (an example is circled in red).

the previous sections mean that the fluid will flow and change
in full cells only, i.e., a cell from the surface with four parti-
cles will become empty, and an empty cell near the surface will
gain four particles. This rigidity will cause particles to lose
their resolution and behave as a unit or a single particle within
a cell. Instead, it is desirable that the fluid be able to propagate
smoothly at any speed, which involves a particle moving alone
into a neighboring empty cell (without dragging u — 1 particles
with it). To allow shape flexibility and individual particle move-
ment between cells, we permit surface cells to have fewer than
U particles. In the next section, we will extend the relaxation

first is a von Neumann neighborhood, which refers to 4-connectivity O surface cells to another layer of cells incident to the surface

in 2D and 6-connectivity in 3D (axis-aligned directions). The
second is a Moore neighborhood, which refers to 8-connectivity
in 2D and 26-connectivity in 3D (two grid cells are neighbors
if the Chebyshev distance between their centers is 1).

Definition 3 (surface). Given cell markings, we define a fluid
cell as surface if it neighbors a cell in a Moore neighborhood
that is not a fluid cell and is not on the domain boundary. We
partition Gyuq into surface cells Cyrface and inner cells Cipner.

In the definition, we used only the domain boundary, distin-
guishing between solid cells that are static (tank walls) and solid
cells that may move (section 7). These solid cells are marked
by the user, who sets the scene.

We start with the motivation. Consider a common setup
where the fluid initially occupies a rectangular shape of 2D grid
cells with density u ppc. The incompressibility conditions from

to make the problem easier to solve.

Definition 4 (bubble). An inner cell ¢ € Gipper is said to contain
an air bubble if it is not empty and the number of its particles
is less than .

In certain cases, such as a breaking wave, the surface curls
and folds upon itself. This leads to a moment in time when a
surface cell suddenly becomes an inner cell since it no longer
has any incident empty cells. A surface cell ¢ € Gyurface that
transitions into Ginner may contain fewer than p particles; equiv-
alently, |y.| < p. Such partial occupancy can occur naturally
during fluid evolution, and we accept these cases rather than
enforcing global corrections that would otherwise restore L par-
ticles to every inner cell.

Following that, we allow inner fluid cells to keep (but not
grow) air bubbles. Specifically, instead of requiring each inner



cell ¢ € Ginner to contain at least i ppc, we require that an inner
cell ¢ does not lose particles and has at least as many particles
as in the previous time step. That is, the particle count |y,| does
not decrease after ¢ becomes an inner cell. Formally, for every
¢ € Ginner We enforce |7.| < |7.|, where 7, denotes the particle
count in cell ¢ at the previous time step. Note that compared to
a surface cell, this is still a restriction since we do not want the
fluid to expand arbitrarily. See fig. 2 for an illustration.
We apply the relaxed conditions to eq. (2):

min ,; Oovj (X}, %) (3a)
s.t. |YC| <u, Vee Gourface (3b)
|}7c| < |’Yc| <u, Ve € Cinner (3¢)

17| <0, Ve € Colid 5 (3d)

In this formulation, inner cells can have fewer than u particles
(air bubbles), but they cannot lose particles. Surface cells are
given more flexibility, and they can lose particles. Note that
while the relaxed constraints allow reasonable fluid expansion,
they do not allow compression: there can be at most ( ppc in a
cell.

5. Grid Movement

The problem in eq. (3) is hard. To make it more manageable,
we reformulate it in terms of grid movement.

We start by limiting the size of the simulation time step such
that no particle moves more than one cell (i.e., to the local
Moore neighborhood). % will refer to particle positions after
advection with the updated time step.

We reduce the possible grid movements of a particle to a set
of grid directions in a von Neumann neighborhood. Namely,
we define the set & that consists of the columns of the d x d
identity matrix and their negations, along with the zero vector
that signifies staying in the same cell. For example, in 2D:

. 5 1 0 -1 0 0
@'_{-@i}izl_ ol'\1)° o/'’\=1]\o (4)
Let m := |2| (m=5 in 2D and m=7 in 3D). Experimentally, we
found that using a Moore neighborhood (9 directions in 2D and
27 directions in 3D) did not make a significant difference.

Instead of solving for particle positions, we solve for particle
grid movements. For each particle, we will choose one direc-
tion from 2 by solving the problem in eq. (7). Let b € Z5" be
an m X n binary matrix that chooses a direction for each particle.
The j-th column is assigned to the j-th particle, and it contains
a single nonzero in the entry that corresponds to the particle’s
chosen direction.

Let @center (¢) € Q denote the center of a cell c. Let @gjose (¢,¢) €

Q denote the point in a cell ¢ that is closest to a point g € Q.
That is, the k-th component of the vector cjose (g,¢) € Q is

qk if || < 0.5
|—(¢cemer (C)>k~| —€ ifvy>0.5
|_(¢center (C)>kJ +e ify, <-0.5

(¢close (q,c))k = , ()

where v i= ¢ — @center (¢), a subscript k denotes the k-th compo-
nent of a vector (or coordinate of a point) in Q, and € (=0.01) is
a small margin based on the grid size (we used an integer grid).

Let x € Q" be the particle positions at the end of the previ-
ous time step. The matrix entry b;; corresponds to a possible
grid movement Z; for the j-th particle. We associate a specific
particle position with this entry, which is the optimal position in
the cell that the particle will end up in with respect to its ideal
position and G, ;:

éij = Qclose ()?j,cell (xj + -%)) ) (6)

where X; denotes the position of the j-th particle in the previ-
ous time step, and cell (-) denotes the grid cell that contains a
given point in the domain. Note that all positions & € Q™" are
known. See fig. 3 for illustration.
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Figure 3: Possible positions &;; (in green) of the j-th particle. A gray arrow
points from the center of the cell that the particle is confined to to the closest
location in that cell (up to a margin €) to £; (in blue). If £; was in one of the
five possible cells, then the corresponding &;; to that cell would have coincided
with it. All the possible positions &;; are known, and a solution to eq. (7) selects
one as the position x; of the particle at the end of the time step. There are five
cells corresponding to . One example of a discrete direction is given by the
magenta arrow, which points from the center of the cell that contains X; (in red)
to the center of the neighboring cell in the discrete direction Zs.

For each cell ¢, we define a set ¥ of index pairs for the par-
ticles that may end up in c. Each index pair is associated with a
particle movement option and consists of a direction index and
a particle index:

%ei={ () leell (&) = ¢}

The problem becomes:

m n
min Z Z bijOonj (&ij, %)) (7a)
b Si=3
S.t. 0< bij <1, Vbij eb (7b)
m
Y bij=1, j=1..n (7¢)



Z bij <u, Vece (gempty ch_surface

(L.J)ETe

(7d)

|}7c|§ Z bijg.ua VCecg_inner (7e)
(i,))€¥

Y bi;j<0, Veebona- (7f)
(1,/))€%

Details:

» The objective in eq. (7a) is similar to eq. (3a). All G (&), £;)
are known, and b ensures that only selected particle move-
ments contribute to the sum.

* Equation (7b) asserts the range of binary variables.

* Equation (7c) forces a single selected direction for each par-
ticle.

» Equation (7d) and eq. (7e) are similar to the incompressibility
constraints eqgs. (3b) to (3¢). The sum Y.(; j)ey, bij counts the
particles that end up in cell c. € refers to the markings in the
previous time step.

» Equation (7f) is similar to eq. (3d)

See fig. 4 for an example.
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Figure 4: A 3 x 3 grid with two particles. The particle positions from the

previous step (X;) are in red. The ideal particle positions after advection (£;)
are in blue. The discrete incompressibility constraint is t = 1 ppc. The optimal
particle positions within the cells associated with a selection from possible grid
movements (&;;) are in green. This selection corresponds to the matrix b on the
right, which is a minimizer of eq. (7). The Ist particle moves to the neighboring
cell to its left, and it reaches its ideal position. There is no added cost for this
particle to the objective function. The 2nd particle stays in its current cell, but
it gets as close as it can to its ideal position. The added cost to the objective
function is the squared distance between its final (selected) position and its ideal
position.

In eq. (7d), we use the surface marking from the previous
time step to relieve the need to track the surface during opti-
mization (or formulate a constraint that handles the two cases of
a surface cell remains a surface or becomes an inner cell). This
extends the relaxed condition on the surface from section 4.1 to
another layer of cells incident to the surface (the condition now
applies to surface cells in the previous time step, which may
belong to the layer of inner cells incident to the surface in this
time step), which is still within reason.

The problem is always feasible since X is in the solution
space. Given a solution b*, the final particle position x; is set
to the &; ; that corresponds to its selected movement direction,

i.e., the i-th entry, the single nonzero in the j-th column of the
solution b*.

The problem in eq. (7) is a linear programming problem with
binary variables b only; the rest of the symbols are fixed (in-
cluding cell markings, index sets, and particle positions, which
do not depend on b). This is a type of integer linear program-
ming (ILP). Satisfying a 0-1 ILP is one of Karp’s 21 NP-complete
problems. The following proposition allows us to relax the
problem to a standard linear programming (LP) with contin-
uous variables b € R™*", for which there are polynomial-time
solvers, and which is generally faster to solve.

Proposition 1. The LP relaxation of the ILP in eq. (7), which
uses continuous variables, has the same optimal solution.

See the proof in appendix Appendix A.

To summarize the correction steps:

* Based on the previous particle positions &, determine the cell
markings € and the sets 7.

* Calculate the optimal positions & from eq. (6) and costs Gop;.

Solve the LP in eq. (7) for b.

¢ Determine new positions x based on the solution b*.

6. The Band Method

Figure 5: A band. Deep cells (¥<_g) in dark blue, band interface (¢_g) in
yellow, surface (%)) in green, and the rest of the band (‘zo”,R<5<0) in light blue.

Solving the LP in eq. (7) does not scale well, and for large
3D grids, we propose an incompressible variant of the band
method [8]. The method uses only a fraction of the number
of particles, which directly affects the size of the LP.

The motivation for the band method is based on the obser-
vation that most of the interesting, complex behavior of a fluid
happens close to the surface. FLIP uses particles to reduce nu-
merical dissipation and keep the simulation lively. Based on the



observation above, particles at deeper levels of the fluid do not
contribute much to the visual appearance. Leveraging that, the
method maintains only a narrow band of particles near the fluid
surface and uses an Eulerian-grid approach to simulate the rest
of the fluid. The grid velocity at each time step is determined
by a combination of the two.

To maintain fluid density for incompressibility, we need to
supervise the number of particles that enter and leave the band.
Furthermore, while the method in [8] uses an approximate dis-
tance from the surface to define the band, our discrete approach
that uses hard constraints requires a more careful estimate.

Definition 5 (depth). Each fluid cell is assigned a depth p € 7
that represents its discrete (signed) distance from the surface,
and it is derived from the state of the fluid (particle positions)
at a time step. The depth is assigned recursively in a breadth-
first-search manner. Surface cells are assigned depth 3 = 0.
Their neighboring fluid cells in a von Neumann neighborhood
are assigned B = —1. The unassigned fluid neighbors of the
B = —1 cells are assigned one level lower, B = —2, and so on
until all fluid cells are assigned a depth. All non-fluid cells are
assigned an arbitrary positive number (e.g., 1) as depth.

Let R+ 1 € N be the thickness of the particle band. We
define the cells at depth —R < 8 < 0 to be within the band.
We call cells at depth B = —R band interface and cells at depth
B < —R deep. We add marking subsets to distinguish between
parts and depth levels of the fluid. Denote by €5 or simply
%) (when clear from the context) the set of cells at depth B = k.
We extend the notation to a range of depth levels, e.g., €<_g
will denote deep cells. See fig. 5 for illustration.

Algorithm 2: A time step of the band method

1 Transfer velocity from particles to grid and combine it
with the current grid velocity // *

2 Apply external forces to grid

3 Project velocity onto divergence-free fields

4 Transfer velocity from grid to particles

5 Advect grid velocity

6 Advect particles // &

7 Correct particle positions // x

8 Update cell markings

9 Remove particles that reached the deep and add
excess particles to the band interface

Alg. 2 outlines the steps of the band method. Changes from
alg. 1 are emphasized. When transferring velocity from parti-
cles to the grid, the particles’ velocities are copied only for cells
within the band, not including the band interface. The velocity
in the rest of the grid cells remains unchanged. When correcting
the particle positions, we modify our algorithm to handle the
band (next sections). Advecting grid velocity, which is needed
for the part of the fluid without particles (not in the band), is
done using the common semi-Lagrangian approach [32]. Cell
markings % are updated, and the step is emphasized in alg. 2 to

clarify that it is performed at the end of the correction step and
before removing and adding particles.

Particles are limited to the band, and particles that go deep
are deleted. To maintain incompressibility, the excess of parti-
cles in the deep is moved into the band interface, as described
next. We keep track in a variable ngeep of the number of (imag-
inary) particles that are in the deep, updating the variable with
every deletion and insertion of a particle. The excess of parti-
cles in the deep is

Nexcess = Ndeep — M |%<7R| .

When #excess > 0, we add nexcess particles to the band interface.
We randomly iterate over the cells in the band interface and
fill them up to u with remaining excess particles. Each added
particle is positioned randomly within a cell, and its velocity is
interpolated from the grid velocity. Note that there is always
space in the band interface for excess particles from the deep
because we constrain the number of movements into and out of
the band interface (next sections).

In the next sections, we offer three variants to control the
movements into and out of the band interface, where each is
faster than the previous one. Foundation and concepts are laid
out throughout the sections, culminating in the fastest variant.

6.1. A Band Constraint

We maintain incompressibility by controlling the comings and
goings of particles through the band interface. We want the
number of particles that move from a shallower depth level (f =
1 — R) into the band interface (f = —R) to equal the number of
particles that move in the opposite direction.

We define two sets of index pairs of particle movement pos-
sibilities, movements into and out of the band interface (from
and into a shallower level):

P = {(i,j) | cell (¥j) € €1-r , cell (&) € ‘KZR}
Yout == {(l,]) ‘ cell (fj) S ng , cell (éij) S (5_1_1{} .

The deep may contain air bubbles from cells that carried
bubbles while they moved into it. We would like to allow bub-
bles in the band interface and deep to fill up. Let a_g, a<_g be
the total amounts of air bubbles (number of missing particles)
in the band interface and deep, which can be calculated from
the numbers of cells and particles:

ar=plCrl- ) %l
CE%,R

Q<R = “|<£<—R‘ — Ndeep -
We express the conditions above as an additional constraint to
eq. (7):

0< Y bij— Y bj<ocg. ®)

(l--,j)E?m (i'rj)e%ut
Here, 0<_g := 0t_p + 0 _g. We also update eq. (7d) and eq. (7e)
to use the band markings:
Z bij <u, Vece (g_empty UCK_surfacc U(ng
(L.)€¥
(9a)



%l < ) bij<m, Veeb gepeo, (9b)
(i,))€¥e

where we allow the band interface the same flexibility as the
surface (to lose particles) since excess deep particles will be
added back to the band interface. We put no constraint on deep
cells due to the particle deletion step.

The correction step is performed as before by solving the
updated problem in eq. (7) for b and updating x accordingly.
Unlike the local, sparse constraints in eq. (7), the band con-
straint is global and dense because it encompasses and ties to-
gether particle movements along the band interface. Moreover,
the system matrix may no longer be totally unimodular, and the
ILP problem cannot be relaxed. In some scenes, these increase
the solver time such that it is not much better than not using a
band (R = ). In the next sections, we offer faster alternatives.

6.2. A One-Way Band Constraint

One way to shorten the constraint in eq. (8) is to first determine
the number of particles that go into and out of the band, and
based on that, constrain only the number of particles in the di-
rection with the greater flow. We do this in two steps, solving
an LP in the first step and an ILP in the second.

First, we solve eq. (7) as is (without an additional band con-
straint) to obtain an optimal solution b*; we do not update x
yet. From these particle movements, we denote the number of
particles that go into and out of the band interface by

* . *
Ny = Z bj;
(1,])E¥n

* . *
Nyt = Z bij :
(1.]) € out

Consider the differences

*

. *
Sin = Moy — Ny + O<—R

*

ek
Sout += Mjp — Moyt -

sin measures how much space is left in the band interface and
deep, and sq,; measures the space in the rest of the band. If
both si, > 0 and soy > 0, then the movements are fine, we can
update x according to b* and proceed with the rest of the algo-
rithm. Otherwise, there is negative space (incompressibility is
violated), and we solve eq. (7) a second time with an additional
constraint, depending on which space is negative.

If s;, < 0, then too many particles have moved into the band
interface, and we must limit them. We fix the movements of all
ng, particles that moved from the band interface to the rest of
the band and block the remaining movements in . In addi-
tion, we prevent movement into the band from particles in €] _g
that do not move into the band interface in b*. We end up with
a constraint that selects nj;  + Q<_g particles from the ones that
moved into the band in 5*:

bij = b;‘kj ) V (i, J) € You (10a)
bij =0, V(i,j) € Fn » b; =0 (10b)
Y bij=nitoac k. (10¢)

(6,])€¥n

When setting a movement b;; of the j-th particle in eq. (10a)
to one, by eq. (7c), we can also set the rest of the particle’s
movements to zero: Vk # i,b;; = 0. Note that eq. (10a) and
eq. (10b) merely eliminate variables from the system, leaving
a single constraint eq. (10c) that sets the number of particles
that enter the band interface. Due to b*, which moves more
particles than required, we know that the problem in eq. (7)
with the additional constraint eq. (10) is feasible.

Otherwise, soyt < 0, and we must limit the number of par-
ticles that move out of the band. Similar to eq. (10), this is
expressed as

bij =bj; V(i,j) € ¥n (11a)

bij=0, V(i,j) € four » bi; =0 (11b)

Y. bij=np, (11c)
(i,j)e?om

where eq. (11a) fixes the variables of movements into the band
interface, eq. (11b) prevents movements out of the band inter-
face that do not occur in b*, and eq. (11c) sets the number of
particles that leave the band interface.

To summarize, in the first step, we solve eq. (7). If needed,
we perform a second step, where we solve eq. (7) again using
the one-way band constraints in eq. (10) or eq. (11). After the
steps, we update x and proceed with the rest of the algorithm.
See fig. 6 for an example.

The one-way band constraint is still dense, and the ILP still
cannot be relaxed. However, because we reduce the number of
variables and simplify the band problem, the revised problem
becomes significantly faster to solve than solving with the full
band constraint in eq. (8).

6.3. Flow Along Paths

The second step of the one-way band-constraint approach can
be viewed as correcting the incompressibility in the band in-
terface and the deep after the first step. We suggest a less ex-
pensive way to perform the correction, which does not require
solving an ILP.

We perform the same first step as in section 6.2 and solve
eq. (7) as is (an LP without additional band constraints), this
time updating the particles’ positions x according to b*. If s,
or Soyt 1S negative, then too many particles have flowed into or
out of the band interface. To correct this imbalance, we move
some of them along grid paths in the required directions.

If sy is negative, then we must move npyoyve = —Sj, particles
out of the band interface. Otherwise, if soy iS negative, then
We must move fmgve ‘= —Sout particles into the band interface.
Otherwise, correction is not necessary.

We limit the j-th particle’s movement to a single cell (in
a von Neumann neighborhood) relative to its position in the
previous time step (X;). To maintain the incompressibility con-
straint, a particle can move into cell ¢ only if it has space (7| <
U, where 7y reflects the state of the updated x). If ¢ does not,
then another particle needs to move out from ¢ beforehand.
This means that a chain of particles needs to be moved along
a grid path, starting from a cell that has the flexibility to lose
a particle—a surface, a band interface, or a former empty cell



d)

Figure 6: An example of correcting the band (1 ppc). (a) The beginning of the time step; see fig. 5 for the color code of the cells. (b) First step, solving the LP in
eq. (7). Four particles move into the cell below them; red arrows indicate their former cells. One of the particles moved into the band interface: nj, = 1, n%, =0,
sin = —1, Sout = 1. Since si, < 0, incompressibility is violated, and we must perform a second step to correct this violation. If we use the variant in section 6.2, then
we solve eq. (7) again—based on the particle positions in (a)—fixing the movements in eqs. (10a) to (10b) and adding the constraint in eg. (10c) to set the number of
particles that move into the band (zero). There will be no movement of particles between cells (only within the cells) compared to (a); intercell movement will occur
only when particles also leave the band interface in the first step. (c) If we use the variant of the band method in section 6.3, then a path from the band interface to
the surface is found. Reverting the vertical path in (b) is always an option; instead, the indicated horizontal path is selected and particles are pushed along it. (d) Cell
markings are updated. In this case, there is no need to remove particles that reached the deep or to fill the band interface with excess particles from the deep (alg. 2).

(see eq. (9a)). We need to find npyeve such paths.

We formulate this as a minimum-cost flow problem (MCFP)
on a graph. The grid cells are designated as graph vertices, and
possible particle movements are designated as graph edges with
capacity one. We will use multiple sources and sinks, denoted
Gsource and Giink- The locations of sources and sinks depend
on the flow direction—into or out of the band interface. In the
“in” direction, surface cells are sources, and band interface and
deep cells are sinks. In the “out” direction, interface cells are
sources, and the rest of the band (surface and inner cells with
bubbles) and empty cells are sinks.

The cost of an edge that represents a possible movement of
the j-th particle into a cell c is the cost of its (optimal) position
in ¢ minus the cost of its current position with respect to its ideal
position:

Oedge (J/,€) = Oob; (¢close (%j,¢) ﬁj) — Oovi (x,%7) - (12)

We limit the movement of the j-th particle to its cell in the
previous time step and to the cells neighboring that cell (in a
von Neumann neighborhood).

To solve the MCFP, we use a variant of Dijkstra’s algorithm
to find nmeve (augmenting) paths in the (residual) graph (using
terms from the Ford—Fulkerson algorithm). The algorithm is
listed in alg. 3.

A path starts in a source cell and ends in a sink. The algo-
rithm finds paths that do not share cells (or particles). We hold
data related to the cells in three arrays (of size |€|): J, byin, and
0. J|c] is the index of a particle that represents an edge to the
parent of ¢ on a path, where ¢ can belong to at most one path.
byin[c] is a (boolean) flag that indicates if the path that started
at the source cell ¢ is complete. & [c] is the total cost of the path
that ¢ belongs to from its source to c. The three arrays are ini-
tialized with none, false, and oo (using multiple assignment in
line 2).

The search for paths starts at source cells (skipping empty
ones), which are pushed into a priority queue Q of objects of

type Node (line 6). A Node represents the last vertex in a path,
which will probe for the next cell on the path. The fields of
Node are: cost—the sum of edge costs along the node’s path;
cell—the cell that the vertex represents; edge—the index of a
particle that represents an edge to the cell’s parent; and root—
the path’s root (a source cell). A new Node is created using a
constructor function with named arguments, and it is added to
0, where the field cost is used as a key to compare elements.
The special value ROOT is used to indicate a root node (no
parent).

In the main loop, the Node with the lowest cost is dequeued.
Line 11 checks if the cell has already been visited, i.e., if it has
already been dequeued and has been assigned a parent. Q can
hold Nodes of the same cell but with different parents (differ-
ent possible paths). Only the Node with the lowest cost is pro-
cessed, and the rest are ignored. This is an efficient alternative
to the priority queue’s decrease-key method for sparse graphs.
If a path that started at the node’s root has already finished, then
the node is ignored. If it is the first time that the node is visited,
then it is assigned an edge to the parent on that path or a ROOT
tag (line 13). If the node is a sink with available space (line 14),
then the path is complete, and it is added to a (returned) list of
completed paths P.

The neighboring cells of a node that have not been visited
yet are explored (line 18). The best edge to a neighboring cell
' is determined, and if the path to it has a lower cost, then ¢’
is enqueued. Alg. 4 lists the algorithm that finds the best edge
from cell ¢ to ¢’. The condition in line 3 checks that ¢’ is not
more than one cell away from the particle’s cell in the previous
time step. It means that either the particle is currently in the
same cell as in the previous time step or it is going to move to
that cell.

The paths are updated one at a time using alg. 5 until 70ve
paths are successfully updated.

Since alg. 3 finds only nonintersecting paths, it may need to
be called more than once (with the paths updated). Paths can



Algorithm 3: Find paths

Output: A list P of Paths and an array J of |¢| edges
to parents
1 Let by, be an array of |¢'| flags, ¢ be an array of |¢|
costs, and Q be a priority queue
2 for c € € do J[c],bsin[c], 0 [c] < none, false, oo
3 for ¢ € Giource d0 // initialize O

4 if |y.| =0 then continue // no particles

5 a <+ Node( cost=0, cell=c, edge—ROOT root=c )
6 Q.enqueue( a) // using a.cost as key

7 olc]+0

8 while not Q.empty()do // main loop

9 a<— Q.dequeue() // lowest cost

10 ¢ < a.cell

1 if J [ ] ¢ {none, ROOT} then continue

ited

12 if bf,-n [a.root] then continue // finished
13 J[C} — a.edge // assign an edge to the
parent
14 if ¢ €@nkand || <p then // 2 sink with
wailable space

15 byin [a.root] = true

16 P.add( Path( edge=a.edge, sink=c ) )

17 continue

18 fOI' de 9\{0} do // excluding the zero

19 c <—cell(¢cemer( )+d)

20 if J[ ] = none then continue // visited
,,,,,,,,,, 1Y C

21 J <—best _edge(c, )

22 if j = none then continue // no edge

23 < G[ ] + Oedge (], ) / total cost from

he source

24 if 1> 6[ /| then continue // is not
better

25 od] 1t

26 Q.enqueue( cost=t, cell=c’, edge=j, root=a.root
))

Algorithm 4: best_edge( ¢, ¢')

Input: Two cells ¢,
Qutput: An index j of a particle that can move from ¢
to ¢’ with the lowest cost
1 0,j < o, none
2 for j' €. do
3 if ¢ +# cell (i j1> and ¢’ # cell ()Zj/> then continue
/ farther than one cell
4 if j = none or Geage (//,¢') < o then
O, j < Oedge (j,,c/) v

rrom .\'/’
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Algorithm 5: Update a path
Input: An array J of |%’| edges to parents and a Path r

1 j,c < redge, r.sink
2 while j# ROOT do

3| cell(x)) // pare
4 Xj <= @close (xAjaC) // 1e particle
s | jeeJ[d] .

be found (in the residual graph after an update) as long as the
maximum flow has not been reached. The maximum flow is
at least nyeve since it is possible to revert the particle positions
induced by b* back to x. However, since the edge costs may
be negative and we use Dijkstra’s algorithm, the resulting flow
from the algorithm may not have the lowest cost. We decided
not to use a more expensive algorithm that finds the optimal
cost since nyeve 1S only a small percentage of n, and in our ex-
periments the results of using Dijkstra did not vary much from
the alternative methods suggested in the previous sections.
See fig. 6 for an example.

7. Coupling with Solids

We address the incorporation of solids into our framework. We
illustrate the idea with a simple scene of an object (also referred
to as an obstacle) free falling into water. For clarity and sim-
plicity, we adopt a one-way coupling: The object influences
the fluid particles, but the particles do not influence the object’s
motion. The object experiences only translational dynamics;
torque, rotation, shear stresses, and local pressure distribution
are neglected. Its trajectory is scripted along a single axis,
with either constant speed or acceleration defined by gravity
and buoyancy. Buoyancy is prescribed per grid cell based on
the object’s vertical position in the scene, not on local parti-
cle occupancy. The object may pause or continue in the same
direction according to the correction rules specified below.
Before the object hits the water, its motion is affected only by
gravity. After the object hits the water, the drag and buoyancy
forces come into play, decelerating the object until it reaches
terminal velocity. The effect on the fluid is expressed in the
boundary conditions of the pressure equation [5, chapter 5].
The pressure in grid cells that are marked as solid is set to p =0,
and along the solid boundary we have
U-n=Usolia " 1, (13)
where 7 is the boundary normal, and u)iq is the solid velocity.
The position of a moving object is tracked, and its represen-
tation (e.g., a mesh or solid particles) determines the grid cells
it occupies. We allow a (non-empty) grid cell to be occupied
by either fluid or a solid, which determines its marking. As
with fluid particles, the time-step size is limited to prevent a
solid from moving past the neighboring cells (Moore neighbor-
hood). If an object is going to occupy new cells, then the cor-
rection step decides whether the object moves or stays in place.
For simplicity, we make further assumptions: (i) the objects
are denser than the fluid, and (ii) the movement of an object is



prioritized unless incompressibility or fluid speed is violated.
It means that an object falling into the water should continue
moving smoothly to the bottom of the tank, with acceleration
determined by gravity and buoyancy alone, while fluid parti-
cles clear the way. This movement should be impeded only if it
is going to cause unnatural fluid behavior such as overaccelera-
tion or compression.

Let Gnew_solia be the set of cells that are not marked as solid
and that the object intends to move into. We modify the objec-
tive in eq. (7a) to use a new objective function:

m n
min Z bijOsoid_obj (&ij» %) (14)
b 33
where
if cell(q) € 6, i
Guata o (¢.r) = 4 rensty - iF cell (@) € Guew a5
Oobj (¢,r) else

Apenalty (=1000) is set to a large weight to penalize particle
movements into (potentially) new solid cells.

Given a solution to the modified problem, the correction step
lets the object move only if none of the new particle positions x
are in %new_solid; Otherwise the object stays in place.

For the band method in section 6.3, we modify Geqge in eq. (12)
{0 Use Ogolid_obj instead of Oop;.

The definition of the fluid surface (definition 3) considers
fluid cells that touch a moving obstacle as surface. This enables
flexibility in the movement of an obstacle.

7.1. Clearing the Bottom

. HENEN
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Figure 7: Clearing distance. Two frames of an obstacle (red square) falling into
water (1 ppc). The clearing distance of cells in Ghew sonia 18 marked. (Left) all
the cells in Gpew _solid have a non-obstacle neighbor below them, and their clear-
ing distance is 1. (Right) Only the particle in the rightmost cell in Ghew solid 1S
guaranteed to clear the way using eq. (15). Other particles in Ghew solid require
eq. (16) to guarantee progress towards clearing the way.

Consider a particle that occupies a potentially new obstacle
cell and currently blocks the obstacle movement. As long as
there is a path for this particle in the surrounding fluid to a cell
with free space not in Ghew solid, an optimal solution will push
it along that path to move it out of the obstacle’s way and avoid
the penalty in eq. (15).

There is always such a path in the fluid (as long as there is
space) except when the obstacle reaches the last layer of fluid
before touching the bottom of the tank. Consider such a row of

11

cells in Gpew solia between the obstacle and the bottom, where
all the cells are empty except the middle one, which contains a
particle. The particle has three possible cell movements: stay
in the current cell, go left, or go right. Its contribution to the
objective in eq. (14) would be the same in each case, and noth-
ing would motivate it to clear the way. To address that, similar
to definition 5, we define

Definition 6 (clearing distance). Each cell in Gpew solia IS as-
signed a clearing distance that represents its discrete distance
from a cell that is not in Gpew_solia, where solid cells are ignored.
The clearing distance is assigned recursively in a breadth-first-
search manner. Cells in Gpe solia With neighboring cells (in a
von Neumann neighborhood) that are not in 6pe _soiia are as-
signed 1. Their unassigned neighbors are assigned one level
higher, 2, and so on until all the cells in Gyew_solia are assigned
a clearing distance.

We modify eq. (15):

)vpenalty -cdist (q)
Oov; (¢, 7)

if cell (C]) S anew_solid

bl
else

Osolid_obj (Qa r) = {
(16)

where cdist () denotes the clearing distance at cell (¢). This pe-
nalizes particles according to their clearing distance; see fig. 7
for illustration.

8. Evaluation

We implemented our method as a plugin for MantaFlow [34],
using conjugate gradients to solve a Poisson equation. We used
Gurobi [10], selecting the dual simplex algorithm without pre-
solve, to solve LP and ILP problems.

Measuring running time. The experiments were conducted on
a laptop equipped with an Intel Core 17-9750H CPU (2.6 GHz,
6 cores) and 32 GB of RAM. The running time of FLIP and
IDP is dominated by solving a Poisson equation. FLIP solves
one for pressure, and IDP solves an additional Poisson equation
for density. The running time of our method is dominated by
the solution of the LP problem.

Volume measure. We define the discrete volume measure of a
cell ¢ based on its depth (definition 5) as

0 c € Cpa
V. := { min (17 ”ﬁ”) cEC 1<p<o - a7
1 else

Cells near the surface are given reasonable flexibility and are
allowed to have fewer than p particles. Other fluid cells are pe-
nalized if they have fewer than p particles. All cells are penal-
ized if they have more than u particles. Solid cells that contain
particles are still considered purely solid, and their fluid volume
is zero.



The measure used in [15] is min (1, H%H) for any cell c. This

measure is more favorable to our method because it penalizes
overflow only and overlooks air bubbles (volume inflation). Ac-
cording to that measure, our method preserves discrete volume
perfectly.

When reporting results, we measure the volume of the whole
fluid in a time step as %, where V :=Y .o V. is the total fluid
volume in a time step, and V* is the volume the fluid should
occupy. If there is no emitter in the scene, then V* is simply the
initial fluid volume. We report the range of volume percentages
(100%) over all the simulation time steps.

We evaluated our method in several scenes described in sec-

tion 8.1; see the supplementary video for their animations. Some

of the figures show selected frames from scenes in the video.
Statistics on volume preservation and running time are summa-
rized in table 1 and table 2. The grid sizes used in the figures
and video are those in table 1. We compared our method with
IDP [15], FLIP, the narrow-band FLIP [8], and Power PIC [26].

Power PIC has several parameters that can be crucial for its
behavior, the accuracy of its particle distribution, and volume
preservation. We scaled the resolution of the transportation grid
by 2 in each dimension (i.e., x4 finer than the simulation grid
in2D). Wesete=0.1,n=1, 7= ﬁ (e.g., % for 4 ppc in
2D), and 6 = 0.1. We did not cut off small coefficients from the
Gaussian kernel K since doing so increased the number of iter-
ations due to lower accuracy. Besides increasing running time,
large scaling of the transportation grid resulted in cracks and
holes that repeatedly formed and mended in the fluid. Larger
values for € and § disrupted the uniform particle distribution.
On the other hand, the effects of using smaller values ranged
from the fluid becoming sluggish and exhibiting extremely high
energy dissipation to standing still. To summarize, Power PIC
can correct the fluid’s volume and particle distribution, but it
does so at the risk of introducing dissipation when the changes
are aggressive.

8.1. Scenes

The default settings used in the scenes (unless specified other-
wise):

* The initial density is 4 ppc in 2D and 8 ppc in 3D.

* The band method is used only for our method in 3D (the vari-
ant in section 6.3). The band thickness is R = 3.

* The maximum fluid speed is bounded.

The scenes with an obstacle follow the one-way coupling de-
scribed in section 7.

A breaking dam. In this scene, we perform an initial compar-
ison of the methods’ behavior and volume preservation. Some
time after the dam breaks, an emitter spews a stream of water
into the tank. After the emitter finishes, the total number of
particles should fill exactly half of the tank (domain); see fig. 8.

The volume is plotted in fig. 9. FLIP loses volume, and this
is its general tendency. The volume of the narrow-band FLIP
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Figure 8: The last frame from a dam scene in the supplementary video.
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Figure 9: Volume (in percent) over time of the 2D dam scene.

fluctuates. Power PIC gives a nice distribution of particles and
tends to preserve volume, though not perfectly. IDP tends to
preserve volume but suffers some compression. Our method
uses constrained optimization and cannot lose volume. The
volume may increase, however, due to air bubbles. Our band
method behaves similarly. For both band methods, we used
thickness R = 6 due to the more lively behavior of the particles
compared with other scenes.

Figure 10 shows a frame, where IDP keeps the clumped
lines of particles and suffers volume loss. Power PIC and our
method distribute the particles, which adds noise to the fluid
that reaches the surface.

Figure 11 shows another 2D dam scene (without an emit-
ter) using 1 ppc in a x4-finer grid (i.e., scaled by two in each
dimension). For FLIP and IDP, the fluid collapses, causing a
dramatic volume loss. This is due to the sparse particle distri-
bution (1 ppc), where particles can easily clump together, and
some cells are missed. As a result, the fluid is riddled with
holes (see fig. 12). The holes have zero pressure, and they dis-
rupt the velocity field and attract particles. Power PIC works
hard to maintain a uniform distribution of the particles, and it
requires significantly more Sinkhorn iterations for a time step.
While its volume loss is less severe, the general behavior of the
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Figure 10: A frame from a dam scene (in the supplementary video), when the
water hits the right wall. Volume labels indicate the volume in this frame only.

fluid is similar to FLIP. Our method is the only one to maintain
reasonable fluid volume and behavior, which is similar to the 4
ppc case, and the rare occurrences of holes in the fluid do not
disrupt the velocity field. Since there is at most one particle
in a grid cell, there can be no air bubbles, and the volume is
perfectly preserved.

Figure 13 shows a 3D dam scene. FLIP loses a significant
amount of volume. IDP preserves the volume but suffers some
compression. IDP keeps the fluid smooth while ours introduces
noise similar to the 2D case (fig. 10). Using our method, the
fluid hits the left wall at the same time as FLIP does. IDP over-
shoots the splash, which hits the wall earlier and more strongly.
The 1 ppc version of our method requires surface extraction at
lower resolution, which is less detailed. Our 8 ppc version gains
some volume due to air bubbles.

A drop of water. A drop of water is falling into a pool; see
fig. 14. Note where the splash goes. IDP throws the splash off
center while ours keeps it centered like FLIP.

Compressing the fluid. A heavy obstacle moves at a constant
velocity (scripted) towards the bottom of the tank. Its move-
ment should supersede the fluid’s unless fluid speed or incom-
pressibility is compromised. The obstacle’s width is the same as
the tank’s, leaving no room for particles to pass it. The expected
result is the obstacle moving smoothly without overlapping any
particles, compressing the fluid as much as it can; see fig. 15.
An example of a similar real-world scenario is a heavy platen
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FLIP
Volume: 19-100%

IDP
Volume: 36-100%

Power PIC
Volume: 79-100%

Ours
Volume: 100-100%

Figure 11: A dam scene with 1 ppc (from the supplementary video).

in a sealed hydraulic press or compression rig, where a piston
spans the bore and forces the incompressible fluid ahead of it
so the platen descends while the fluid is compressed.

We show two options for FLIP and IDP:

1. Moving the obstacle while disregarding the fluid. Since the
fluid has no room to escape, there is an inevitable overlap
with the obstacle, which leads to volume loss.

2. A naive collision detection, where the obstacle stops and
waits until the fluid clears the cells that the obstacle is mov-
ing into. IDP’s volume correction disperses particles, which
end up in the obstacle’s way and obstruct its path more than
FLIP. Due to the jumpy behavior of the particles, IDP does

T ooTorro

Figure 12: A dam scene on a 30 x 30 grid with 1 ppc. (Left) FLIP’s fluid is
riddled with holes that disrupt the velocity field. (Right) Our fluid has fewer
holes, and the constraint maintains the volume.



FLIP
Volume: 65-100%

IDP
Volume: 95-100%

Ours
Volume: 100-108%

Our 1ppc
Volume: 100-100%

Figure 13: A dam scene.

not squeeze the fluid to the maximum possible, leaving some
room for air. Moreover, particles still have energy and con-
tinue to swirl around even after FLIP finishes. FLIP, on the
other hand, lets the obstacle compress the fluid too much,
which leads to significant volume loss. For both methods,
the obstacle exhibits an undesired halting behavior.

Our method achieves the desired behavior and finishes the sim-
ulation much earlier than the other two.

A spiral. In this scene, the plate again compresses the fluid,
but here the fluid is forced through a narrow spiral tunnel that
channels it into a smaller cavity; see fig. 16. Since the fluid’s
speed is limited, so is the obstacle’s. An example of a similar
real-world scenario is a spiral heat exchanger, where fluid is
directed through a tightly wound helical channel that forces the
liquid into a confined cavity.

We used naive collision detection for FLIP and IDP. FLIP
lets the obstacle compress the fluid too much. IDP allows the
obstacle to descend more than it should before it can correct the
fluid, consequently losing some volume that cannot be recov-
ered. In both methods, the obstacle’s progress has more delays
than necessary due to particles blocking the way. Without colli-
sion detection, the result is as bad as in the previous scene (not
showed).

Using our method, the obstacle progresses as fast as the
fluid’s speed limit permits, and the fluid is compressed as much
as the volume restriction permits. After the fluid is compressed
as much as possible, particles are clumped inside cells, and the
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FLIP

IDP

Volume: 94-100% Volume: 97-100%

Ours
Volume: 100-100%

Figure 14: A water drop.

fluid continues to exhibit jerky motion.

A falling obstacle. An obstacle is falling into the water. An
example of a similar real-world scenario is a heavy cargo con-
tainer dropped into harbor water. When the rigid body enters
the free surface, buoyancy and drag slow its descent, and splash
dynamics dominate as the surrounding fluid is displaced. FLIP
and IDP behave similarly:

* Without collision detection, some particles are trapped at the
bottom, which leads to volume loss.

¢ With collision detection, the obstacle movement is halted not
long after hitting the water, far from the bottom of the tank,
and there is no progress.

Using our method, the obstacle moves smoothly (like FLIP
without collision detection) and does not overlap particles, which
would cause volume loss. Figure 17 shows the 2D case, and
fig. 18 shows the 3D case.

Our method can move the obstacle through the fluid even
without the obstacle exerting any force on the fluid. Figure 19
shows an experiment where the boundary conditions for the
pressure equation along the obstacle’s boundary, eq. (13), are
set to zero velocity. While the scene illustrates a specific as-
pect of our method, an example of a similar real-world scenario
is a robotic wedge driven into a block of foam, in which the
wedge’s motion is prescribed kinematically and the foam itself
must deform and rearrange around the obstacle. Because the
foam boundaries remain fixed, the obstacle’s descent displaces



IDP

FLIP, no collision detection FLIP FLIP
Volume: 0-100% Volume: 59-100% Volume: 90-100% Volume: 96-100%
IDP Ours FLIP, no collision detection Ours
Volume: 92—-100% Volume: 100-101% Volume: 95-100% Volume: 100-100%
Figure 15: Compressing the fluid, the final frame. Figure 17: A falling obstacle, the final frame.

Without collision detection, the object moves unhindered, dis-
regarding the fluid’s speed limit and how fast particles can clear
the way. Consequently, particles on the bottom of the tank are
trapped inside the obstacle, leading to significant volume loss.
Using our method, the obstacle delays as necessary, waiting for
the fluid to clear the way. Thanks to the method in section 7.1,

FLIP P Ours the path is fully cleared until the object finally rests at the bot-
Volume: 17-100% Volume: 90-100% Volume: 100-100% tom Of the tank.
Figure 16: A spiral, the final frame. 8.2. Discussion

material without active force exchange, illustrating the case of _scene grid FLIP _IDP___ours
a moving obstacle with zero boundary velocity. dam with emitter 5050 49-100 92-100 100-105
. . . s dam with 1 ppc 100x100 19-100 36-100 100
There is nothing to repel the fluid from the obstacle’s path. compressor 50%50 59-100 92-100 100-101
As expected, when FLIP uses collision detection, the obstacle spiral 50%50 17—100 90—100 100
cannot penetrate the fluid. Using our method, the obstacle pro- large falling obstacle 50%75 35-100 71-100 100
gresses smoothly through the fluid, and the correction method dam 100x100x100 65-100 95-100 100-108
displaces particles out of the obstacle’s path, requiring no other water drop 100x100x100 94-100 97-100 100
forces. falling obstacle 100x150x100 99-100 100 100

large falling obstacle 50x75x50 48-100 79-100 100-102

Figure 20 and fig. 1 show another variation with a large ob-
stacle fa].lmg into the water. Here’ the obstacle occupies most Table 1: Volume preservation. A method’s column shows the range of the fluid
of the width of the tank, leaving only narrow paths along the volume (presented as a percentage of the volume it should occupy) over all the
tank wall for the fluid to pass through. This creates a similar ~ simulation time steps, based on eq. (17).
effect to that in the spiral scene that limits the obstacle’s speed: . . .

The obstacle’s speed should depend on how fast the fluid can Methods. We focused the experiments on comparing with IDP,
flow along the narrow paths between the obstacle and the tank WhOS? paper shows comparisons with several other methgds,
walls. With collision detection enabled for FLIP and IDP, the ~ We did not use the band method for FLIP to keep the settings

object makes no progress after hitting the surface (not shown). ~ close to IDP, which does not support the band method. Also,
both methods did not have performance issues that would re-
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IDP
Volume: 99-100%

Ours
Volume: 100-100%

Figure 18: A falling obstacle, the final frame. IDP with naive collision detec-
tion.

FLIP
Volume: 100-100%

Ours
Volume: 100-100%

Figure 19: A falling obstacle with boundary conditions set to zero velocity, the
final frame.

quire it.

Behavior and volume preservation. IDP allows the fluid to
violate incompressibility and to increase density. In its correc-
tion step, IDP moves particles to improve density accuracy. The
improvement is gradual, and the fluid may already be in a state
from which it cannot be recovered. We proposed several sce-
narios to challenge this aspect, offering two reasonable solu-
tions for collision detection in FLIP and IDP: ignoring the par-
ticles and a naive detection approach. Even if the user manually
selects the better of the two for each scenario, none of the be-
haviors is quite acceptable. The naive method caused a halting
behavior or even a premature complete stop. Ignoring particles
led to inevitable overlap between the obstacle and the particles,
which caused volume loss. Even if the loss was acceptable, the
progress of the obstacle was smooth and arbitrary rather than
being dependent on the fluid speed (e.g., the spiral scene). In
contrast, our method strictly enforces incompressibility. A full
correction is applied immediately, and the fluid cannot be com-

16

FLIP
Volume: 35-100%

IDP
Volume: 71-100%

Ours
Volume: 100-103%

Figure 20: A large falling obstacle, the final frame.

scene grid n band Poisson LP MCFP

dam 100x100x100 411K 366K 0.2 109 0.2
200x200x200 3.4M 2.0M 2.5 131.7 1.3

300x300x300 11.5M 3.6M 13.2 484.2 3.9

water drop 100x100x100 725K 228K 02 19 0.1
200x200x200  6.2M 986K 23 78 0.7

300x300x300 21.5M 2.3M 13.2 24 2.2

falling obstacle 100x150x100 5.7M 263K 12 28 0.2
200x300x200 46.7M 1.0M 19.5 133 0.7

large falling obstacle 50x75x50 258K 183K 0.1 3.6 0.1
100x150x100 2.2M 1.2M 1.6 733 1.1

[TPRLN

Table 2: Running time. “n”: the number of particles in the scene. “band”: the
average number of particles in the band. “Poisson”, “LP”, and “MCFP”: the
average time it takes to solve a Poisson equation, the LP problem in eq. (7), and
the MCFP problem in section 6.3. Average quantities are calculated over all
time steps. Timings are given in seconds, rounded to one decimal place.

pressed thereafter. Furthermore, while the obstacle’s movement
is prioritized, its speed is still limited by how fast the fluid can
clear the way.

Our correction is achieved mostly by blocking particles from
moving into neighboring cells rather than by pushing them around.
If a particle is moved to another cell, then the particle is posi-
tioned within the cell to be as close as possible to the location it
was supposed to reach. This is also prioritized over a more uni-
form particle distribution, as in Power PIC, which looks nice in
2D but affects the fluid behavior. IDP tends to preserve FLIP’s
behavior, e.g., fig. 10, where it maintains a smooth surface and
clumped particles, whereas the other methods that add noise.
However, the corrective movements can also substantially influ-
ence fluid behavior, e.g., in the 3D dam when the splash over-
shoots and hits the left wall (fig. 13) or in the water drop scene,
where the splash of water is thrown off the center (fig. 14).

Running time. In 2D, performance was not an issue for any of
the methods, and each time step took less than a second. Table 2
gives timings for 3D scenes with varying grid sizes.

The time required to solve a Poisson equation depends on the
number of fluid cells. For methods that preserve incompress-
ibility, the number of fluid cells is approximately the number of
particles divided by .

MCEFP’s timing depends on the number of fluid cells. In a
typical scene, alg. 3 needs to be executed rarely more than once



Figure 21: An extreme (hypothetical) case of paths (in magenta) that start in
the middle of the band, creating a V shape and blocking other paths.

in a time step if at all. However, in a scene such as the large
falling object, there are time steps where a few calls are needed.
For example, consider the extreme scenario in fig. 21. Two
low-cost paths start in two incident cells in the middle of the
band interface and lead to the surface along the narrow passages
between the obstacle and the tank, creating a V shape. Since the
algorithm finds non-overlapping paths, these two paths block all
other paths, and another call to alg. 3 is necessary if more paths
are needed. This increases the MCFP’s average time for such a
scene.

The time required to solve the LP can vary, depending on
how hard the problem is, which does not necessarily correlate
with the number of particles or grid size. For example, in the
first time steps of the water drop scene, before the drop hits the
pool, the LP solution is close to the ideal particle positions, and
the LP is solved in 7 seconds for a 300° grid. On the other
hand, in the large-obstacle scene, the LP objective includes the
obstacle, and the solution decides whether the obstacle moves.
This creates a dependency between cells in Gpew solia that are
fluid or incident to fluid cells, which is similar to a global dense
constraint. A solution to the LP in this case can take a few
minutes even for a 50 x 75 x 50 grid.

An obvious advantage of using the band method is the re-
duction in the number of particles, e.g., from 46.7 million to
an average of one million in the falling obstacle scene with
the 200 x 300 x 200 grid. But another advantage of the band
method is that it may accelerate the LP even if the number of
particles is not reduced significantly. For example, in the 100°
dam scene, when not using the band method, the average LP
time is 38.9 seconds. When using the band method, the number
of particles is reduced only by 16%, but the average LP time is
reduced to 8.6 seconds. This is because the band method sim-
plifies the problem. Intuitively, the constraints become local:
particles can simply follow gravity into the deep with no restric-
tion, which is corrected by the MCFP in the second step. This
is not the case without the band method, where the flow reaches
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the bottom of the tank or abides by the volume constraint, and
it needs to go sideways and upward, which is a more global
behavior.

Among the three methods, FLIP is the fastest since it re-
quires only one Poisson solution, whereas the other two meth-
ods require additional solves. IDP requires solving an addi-
tional Poisson equation while our method needs to solve an LP
and an MCFP. The cost of the additional Poisson solution is rea-
sonable, and more importantly it is predictable since it depends
on the number of fluid cells. Our method mostly runs in a rea-
sonable time on moderate-sized grids. However, in some cases,
while solving the MCFP remains reasonably fast, solving the
LP can take several minutes, which leaves room for improve-
ment.

Grid artifacts. Our method exhibits grid artifacts. Grid lines
can be discerned in 2D, where particles are stopped from reach-
ing neighboring cells. This effect, however, is cosmetic. As
shown, it does not affect fluid behavior or surface extraction in
3D.

There is also particle clumping within a cell, especially if
more than one particle is halted near a cell boundary. This,
however, is not an issue for our method. Eventually, particles
may be allowed to progress one at a time and will disperse nat-
urally. As can be seen from the 1 ppc experiments, the fluid
behavior and surface extraction differ from the default ppc, i.e.,
the clumping does not reduce the fluid behavior to 1 ppc.

Consider the extreme case where two particles are clumped
to the same position in space and have the same velocity. Other
methods have no way to separate them. Our method, however,
treats each particle individually via the cell constraints, which
will eventually separate them.

Since these grid artifacts are cosmetic, we chose not to ad-
dress them, which may bias the fluid behavior.

Summary. In standard scenes, such as the breaking dam and
the water drop, IDP performs well enough and is easy to imple-
ment. In extreme cases, such as compressing the fluid or using
1 ppc, our method has a clear advantage, and it maintains the
incompressibility condition strictly. This comes at the cost of
additional complexity and running time.

9. Conclusion

We propose a method that constrains particles to grid cells to
enforce our definition of discrete incompressibility. While the
fluid can still inflate with air bubbles, we demonstrate exper-
imentally that such expansion is moderate. Maintaining strict
incompressibility is one advantage over previous work, which
instead gradually corrects the fluid over time. One issue with
gradual correction is that volume preservation is not perfect and
may cause noticeable artifacts. A more severe issue is that the
fluid can reach a state that is irrecoverable.

Our framework can be further exploited in other applica-
tions; we show examples of coupling with solids, which naive
solutions applied to the state of the art fail to handle adequately.
The examples are simple one-way coupling, where the object



movement is scripted. It would be interesting to explore the
method’s behavior in more complex scenes that involve two-
way coupling [3, 5].

The main drawback of the method is performance. In each
time step, an LP is solved. Besides the number of particles,
the fluid configuration affects the running time, which may be
longer than desired. We offer acceleration via an adapted ver-
sion of the band method that enforces incompressibility, and we

[9]

[10]

(1]

showed experimentally that it performs reasonably on moderate-sized

grids. The fastest variation of our band method solves an easier
LP, followed by an additional correction that solves an MCFP.
Although the solution is not optimal, the result is reasonable for
the affected number of particles. A future avenue could be to
find faster alternatives to the LP.

A related limitation is that the simulation time step must be
small enough that no particle moves more than one grid cell per
step; this is analogous to the CFL condition, CFL < 1, which is
commonly enforced in explicit schemes for stability. In graph-
ics applications, however, it is sometimes acceptable to relax
this restriction and trade some accuracy for increased speed.

In summary, when volume errors are negligible, IDP is suffi-
ciently effective and straightforward to implement. In extreme
cases or if perfection is desired, our method offers strict incom-
pressibility. This, however, comes at the cost of added com-
plexity and running time.
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Figure A.22: Visualizing a TU matrix. Zeros are in white, the rest are ones.
The rows with the red cells correspond to eq. (7¢). The rows with the blue cells
correspond to eqs. (7d) to (7f) (without duplicate rows). In both the red and
blue set of rows, each column sums up to one.

* Replace an equality constraint with two inequalities (bound-

ing the LHS expression from both sides).

* Change > inequalities to < by negating them.

¢ Convert the problem into a matrix form. An expression that is

bounded from both sides (which appears in two inequalities,
e.g., eq. (7e) or a transformed equality constraint) appears as
two identical rows in A up to a sign.
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Appendix A. Proofs

Proposition 1. The LP relaxation of the ILP in eq. (7), which
uses continuous variables, has the same optimal solution.

Proof. Transform the LP in eq. (7) into the canonical form
max {cb | Ab < d}, where A is a matrix, and ¢, b, and d are
vectors:

» Change the objective to max by negating it.
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is TU if each of its subdeterminants is € {0, +1}.
Lemma 1. A is TU.

Proof. The proof is by induction on the size k X k of a square
submatrix of A.

Base case: holds for k = 1 since each entry of A is € {0, £1}.
Induction step: Assume the determinant of a k X k submatrix

of A is in {0,41}, and prove for a submatrix B € RE+1)x(k+1),
Possible cases:

¢ B has a row or column of zeros. Then, it is rank-deficient,

and its determinant is zero. Similarly, if B has a duplicate
row up to a sign (e.g., two inequalities that bound the same
expression, and both rows are in B).

B has a row with a single nonzero entry B;; (e.g., eq. (7b)).
Then, consider the Laplace expansion along this row. It will
be equal to B;; times a k x k cofactor of B, which according
to the assumption is in {0,£1}. Similarly, if B has a column
with a single nonzero entry, the Laplace expansion along that
column reduces the determinant to a cofactor whose value is
in {0,£1}.



» Each variable corresponds to a particle movement, which ends
up in a specific cell. Therefore, each variable appears only
once in eqs. (7d) to (7f). Moreover, each variable appears
once in eq. (7¢). This leaves us with the last case where each
column of B has two nonzeros. The nonzeros in each row are
either all 1 or -1. Multiply each negative row by -1, which
may only affect the sign of the determinant. Divide B into
two submatrices

[ﬁj By e RXKHD) g g RUTHD)x(kH)

such that a column in each matrix has a single 1; see fig. A.22
for illustration. Let v € R¥ be the vector

v _
v::lvll, vi=1eR, vyi=—1cRH
2

where 1 denotes a vector of ones. The vector v lies in the null
space of BT; hence detB = 0.
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