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Seamless Parametrization with Cone and Partial Loop Control
ZOHAR LEVI, Victoria University of Wellington, New Zealand

Fig. 1. From left to right: an (abstract) seam graph of the cones over the surface, the domain polygon which the seam is cut into, the final mapping, and [Myles,
Pietroni, et al. 2014]’s result. The initial mapping of [Myles, Pietroni, et al. 2014] contains nearly collapsed triangles. These cause numerical issues that the
state-of-the-art optimizer [Shtengel et al. 2017] could not handle, and it ended prematurely. Similar to [Levi 2022], our method creates a small metapolygon,
consisting only of cone copies, that is optimized before mapping the interior, which alleviates the issue.

We present a method for constructing seamless parametrization for surfaces
of any genus, which can handle any feasible cone configuration with any
type of cones. The mapping is guaranteed to be locally injective, which
is due to careful construction of a simple domain boundary polygon. The
polygon’s complexity depends on the cones in the field, and it is independent
of mesh geometry. The result is a small polygon that can be optimized prior
to the interior mapping, which contributes to the robustness of the pipeline.

For a surface of genus > 0, non-contractible loops play an important
role, and their holonomies significantly affect mapping quality. We enable
holonomy prescription, where local injectivity is guaranteed. Our prescrip-
tion, however, is limited and cannot handle all feasible holonomies due to
monotonicity constraints that keep our polygon simple. Yet, this work is an
important step towards fully solving the holonomy prescription problem.

1 INTRODUCTION
In the past decade, advancements in optimization have contributed
to the robustness of mapping methods. Methods such as [Lipman
2012; Rabinovich et al. 2017; Shtengel et al. 2017] guarantee foldover-
free mappings with low distortion. A prerequisite for these methods
is a feasible initial mapping. In unconstrained parametrization, Tutte
embedding is a popular choice. However, seamless parametrization,
the common approach to quad meshing and construction of seam-
less atlases, requires that the initial mapping satisfies seamlessness
constraints, which calls for a different approach to the problem. In
this work, we extend [Levi 2022] that is limited to spheres to any
genus.
Given a surface triangle mesh, a parametrization (mapping) as-

signs 𝑈𝑉 coordinates to mesh vertices, creating a (flat) layout in
a planar domain. Before flattening the surface, it is cut into a disk
along a tree of seam edges that spans the cones. Each seam edge
on the surface is mapped into two twin (half-)edges in the domain,
corresponding to the two triangles sharing the surface edge. This
creates vertex copies. Each seam vertex has as many domain copies

Author’s address: Zohar Levi, Victoria University of Wellington, New Zealand.

Fig. 2. (Left) a dual loop is flattened isometrically to the plane with a 90◦
holonomy. (Right) a 3-cone (has a 270◦ cone angle; see definition 3.1) is
flattened with a similar 1-ring holonomy.

as its (uncut) seam graph degree. We will refer to the boundary of
the domain (disk topology) as the boundary polygon, or polygon for
short. We require from a valid mapping to be locally injective, which
requires from the polygon to be self-overlapping. A self-overlapping
polygon is a polygon that can be triangulated and oriented consis-
tently, and it can admit a locally injective mapping from any disk
domain [Weber and Zorin 2014].
We will use the term holonomy to characterize a seamless map-

ping. Consider a closed chain of triangles, where two consecutive
triangles in the chain share an edge; see fig. 2. Define a dual loop
consisting of dual edges that are orthogonal to (and cross) the shared
edges. The discrete geodesic curvature at a dual vertex along the
loop is the angle defect at the vertex (or the signed angle between
the normals of the coinciding dual edges). Alternatively, it is equal
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to the angle between corresponding primal edges. The discrete ho-
lonomy angle measures how much the sum of triangle angles along
the dual loop (total geodesic curvature) deviates from 360◦ (angle
defect) [Myles and Zorin 2013, 2012]; see fig. 2.

In seamless parametrization, the holonomy of a dual loop in the
parametric domain is 90◦-multiple. This induces the so called seam-
lessness constraints that require from the vectors (the difference
between end vertices) of two mapped twin edges (in the plane) to
differ by a 90◦-multiple rotation [Bommes, Zimmer, et al. 2009; Levi
2021, 2022]. As a consequence, the sum of copy angles of a vertex is
90◦-multiple. Consider the dual loop that is composed of triangles
incident to a vertex (1-ring). The holonomy of the dual loop is equal
to the discrete Gaussian curvature of the vertex. A cone singular-
ity is a vertex with non-zero Gaussian curvature in the parametric
domain (i.e. not flat—the cone domain angle is different than 360◦);
see fig. 2.

A common approach to quadmeshing is via seamless parametriza-
tion, using the following steps ([Bommes, Lévy, et al. 2013; Bommes,
Zimmer, et al. 2009]):

• A smooth cross field is generated over the mesh. In addition to
a cross per face, a field also defines a matching per edge (or a
period jump) that uniquely determines all dual loop holonomies
(and cones).
• Seamless parametrization is generated from the field. The surface

is cut into a disk, where the seam passes through the cones, and
the crosses are used as guiding target frames when optimizing
the mapping.

• Cone positions and translations of twin edges are rounded [Campen,
Bommes, et al. 2015].

• A quad mesh (similar to a checkerboard texture pattern) with
similar holonomies is extracted.

Wewill use the term field to refer only to field characteristics, namely
non-contractible loop holonomies and cones (and we ignore the
field directions).

Due to the seamlessness requirement, generating an initial seam-
less mapping for optimization methods is challenging. Recent efforts
have been made to generate an initial valid seamless mapping for
any (feasible) cone configuration [Campen, Shen, et al. 2019; Levi
2022; Zhou et al. 2020]. Combinatorial approaches, which enjoy
robustness in the face of numerical issues, usually construct an aux-
iliary quad mesh, which a self-overlapping polygon can be extracted
from (see [Levi 2021, section 7 in the supplement] for how to lay out
a quad mesh in the plane to define a locally injective mapping with
a self-overlapping boundary). Then, the input mesh can be mapped
into this polygon to generate a valid seamless mapping.

Levi [2022] showed that generating an arbitrary self-overlapping
polygon may not suffice since mapping the surface interior is prone
to nearly collapsed faces if care is not taken. Instead, the paper takes
the approach of constructing a metapolygon (which consists of cone
copies) directly. A compact metapolygon allows for optimization
prior to mapping the interior [Levi 2022, appendix D], which allevi-
ates the issue. This was the first work to address the full pipeline
and demonstrate robustness through extensive experiments. The
method also handles any type of cones. Unfortunately, it is limited
to spheres.

In this paper, we extend [Levi 2022] to higher genera. We keep
most of the pipeline intact and focus on generating the initial
metapolygon. Our method enjoys the same benefits that [Levi 2022]
offers. These include robustness arising from a combinatorial con-
struction, which is mesh-independent. Similar to [Levi 2022], we
offer a numerically robust method to realize the offered combina-
torial construction. While our main focus is to generate a locally
injective mapping for any given (feasible) set of cones, we take a
step further and also prescribe non-contractible loop holonomies.

In a surface of genus ≥ 1, the seam graph that cuts the surface into
a disk passes though all cones and a basis of non-contractible loops.
A parametrization induces a cone metric, where most of the surface
is flat (zero curvature) except for the cone singularities, which can
be considered as punctures in the surface. Two homotopic curves on
the punctured surface (the mesh without the cones) have the same
holonomy in the flat metric. The holonomy (in the flat metric) of a
curve is completely determined by the holonomies of a basis of non-
contractible loops and a single loop around each cone [Myles and
Zorin 2013]. Therefore, to fully characterize a mapping, holonomies
of non-contractible loops need to be prescribed in addition to cones.
Without prescription, similar to cones, non-optimal holonomies
can increase mapping distortion significantly as we show in our
experiments.
The main advantage of our approach is in directly construct-

ing a metapolygon, which allows us to control and prescribe loop
holonomies. Our prescription, however, is limited by other con-
straints that we use to generate the polygon, such as monotonicity
that serves in keeping the polygon simple. Consequently, we cannot
always assign optimal holonomies for all loops, which opens an
avenue for future work.
To summarize, given a triangle mesh with a specific set of cone

singularities and possibly holonomies of non-contractible loops,
we construct a seamless parametrization that is locally injective
(guaranteed), set the Gaussian curvature of the cone singularities
similar to the input (guaranteed), and set the holonomies of non-
contractible loops as close as it can to the input.

1.1 Outline
Our pipeline is similar to [Levi 2022, section 1.2], see summary in
section 3.1. The only difference is the metapolygon (definition 3.4)
construction that can handle a surface of any genus, which is done in
two parts. In the first part, we trace a special seam over the surface.
Fields with negative cones (only) are addressed first in section 4. The
seam construction includes forming special cone sets and assigning
internal and external connections, which specify the seam graph.
Fields with positive cones are handled in section 5. In the second
part, we solve for the domain metapolygon in section 6, which
involves a carefully designed mixed-integer linear program (MILP).
Sets of linear constraints are added to the MILP, each responsible
for a different aspect of the problem.

The component of the pipeline that generates the polygon, which
this paper focuses on, is given in fig. 4. See fig. 3 for a simple example
and fig. 10 for a more detailed one. Once the polygon is constructed,
the pipeline proceeds as in [Levi 2022, section 1.2].
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(a) (b) (c) (d) (e) (f)
(g)

index -2

external 0

tree 0

joint 0

loop4 2

loop2 0

loop0 0

defect 4

Fig. 3. A simple example of a 2-torus with a single cone. The input is a 12-cone and two tunnel loops (a). A cset is created for the cone. Using alg. 1, an iset is
created for the cset. Using alg. 2, an iset chain is created (with a single member), assigning four corners to the iset. According to its index, the iset is even. It is
assigned two double loops and four corners. The problem in eqs. (4) to (10) is solved to determine the internal connections of the iset (since the iset consists of
a single cone, the solution is trivial). The table in (b) shows the results. The table shows for the iset the assigned connections of a single cone of index -2: two
double-loop connections. The defect of the iset is 4, which accounts for four corners and turning number 1 of a self-overlapping polygon. The connection graph
is shown (c), and connections are traced over the surface following appendix A. (d) shows the traced seam over the surface. The seam is cut, and the problem
in section 6 is solved to determine the metapolygon angles and edge lengths (e). Four corners are marked with squares. Meta-edges between corners are
monotone. (f) the UV mapping after interior mapping and optimization. (g) a checkerboard pattern is pulled back to the surface. The high distortion is due to
selecting the cone arbitrarily.

Proofs of propositions can be found in appendix E, where appen-
dices C to E can be found in the supplement.

Some of the figures contain vector images, which can be zoomed-
in and magnified without compromising quality.
All angles in the paper are measured in degrees.

2 RELATED WORK
We review work related to seamless parametrization and locally
injective mappings with guarantees.

Among the various approaches to seamless parametrization [Bommes,
Lévy, et al. 2013; Fang et al. 2018; Levi 2021; N. Ray et al. 2006], one
popular strategy is generating a smooth cross field over the mesh as
a first step [Bommes, Campen, et al. 2013; Bommes, Zimmer, et al.
2009; Campen, Bommes, et al. 2015; Chien et al. 2016; Diamanti
et al. 2015; Jakob et al. 2015; Kälberer et al. 2007; Levi and Zorin
2014; Myles and Zorin 2013, 2012; Nicolas Ray, Vallet, Alonso, et al.
2009; Nicolas Ray, Vallet, Li, et al. 2008; Tarini et al. 2011; Vaxman
et al. 2016]. Working with a field is convenient since one can easily
set cone singularities and non-contractible loop holonomies. In a
second step, the mesh is cut into a disk, and the cross field is used as
local target frames to lay it out in the plane (parametrization). Most
of the previous work, however, does not guarantee in the second
step fidelity to the field holonomies generated in the first step, or
even worse the resulting mapping may not be locally injective.
Tutte planar embedding [Tutte 1963] and its generalizations

[Floater 2003; Gortler et al. 2006] guarantee injectivity, but the
convexity requirement restricts the method from satisfying seam-
lessness constraints. Aigerman and Lipman [2015] generalize Tutte
embedding to orbifolds that satisfy seamlessness constraints, but
the method is limited to a handful of cone configurations of up to
four cones in each.

Recently, Campen, Shen, et al. [2019] proposed a method to con-
struct an initial locally injective mapping that obeys seamlessness
constraints. The method can handle any cone configuration except
for 1-cones. They start with a discrete conformal mapping [Campen
and Zorin 2017], which is seamless up to matching lengths of twin
edges. This involves non-linear optimization that is prone to nu-
merical issues. They follow with a padding step to equalize the

lengths of twin half-edges, which ensures seamlessness. W. Chen
et al. [2019] follow a similar route, using discrete conformal map-
ping to parameterize a mesh. However, ensuring seamlessness is
not detailed.

The approach in [Campen and Zorin 2017] for conformal mapping
avoids foldovers by flipping quad edges, during the discrete metric
evolution [Springborn et al. 2008], of faces that are about to collapse.
This is based on [Luo 2004] that does not provide guarantees that
the process converges (avoiding entering an infinite loop of edge
flips). Sun et al. [2015] resolved the convergence issue by performing
a flip whenever two triangles become concyclic, which ensures that
the computation terminates.
Recent work on conformal mapping [Campen, Capouellez, et al.

2021; Gillespie et al. 2021] use Ptolemy rather than Euclidean edge
flips, which arise from a hyperbolic perspective. A Ptolemy edge flip
preserves an hyperbolic metric and allows to retriangulate a hyper-
bolic polyhedron without changing its geometry. Both papers report
improvement in terms of running time and accuracy. Unfortunately,
since Ptolemy flips involve exponential terms, the method is limited
to finite precision, and both papers report failures. As pointed out
in [Levi 2022, appendix G.2], once the geodesic curvature of the
boundary is prescribed (for setting the cone angles), the conformal
mapping is unique. The scaling factor can vary drastically over the
mapping (e.g. [Levi 2022, figure 16]), which causes numerical issues,
specifically nearly collapsed triangles that challenge optimization
methods [Shtengel et al. 2017] that use the mapping as initialization.
Even if exact arithmetic is used to calculate the conformal mapping,
the input to an optimization method needs to be in finite represen-
tation, which may contain (nearly) collapsed triangles [Shen, Jiang,
et al. 2019].
To circumvent numerical issues, Zhou et al. [2020] combinato-

rially construct quad patches with the desired singularities. The
patches are padded to obtain matching borders, and a full layout
(parametrization) of a quad mesh is constructed. A self-overlapping
polygon is extracted from the quad layout, into which the input
surface can be mapped. The paper reports limited results that in-
clude only the auxiliary quad mesh and the initial polygon (without
mapping the interior and optimizing the mapping). Similarly to
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Part I: seam construction

Part II: solving for the polygon

1. Forming the isets (section 4.1)

Constraints for local injectivity

Setting loop holonomies (section 8)

Intersection constraints for global injectivity
(appendix B)

Special case: 1-torus (appendix D)

2. Assigning corners and external connections
(section 4.4)

3. Internal connections of an iset (section 4.5)

4. Pairing and tracing connections (appendix A)

Polygon angle suspension (section 7)

Polygon angles (section 6.1)

Polygon edge lengths (section 6.2)

Monotonicity constraint deactivation (section 8.1)

Specific edge directions (appendix B.2)

Allowing 360◦ angles (appendix B.1)

Longer corner edges (appendix B.3)

Bounding box constraints (appendix B.4)

Common constraints for L-shape and stair-shape
(appendix D.2)

Gun-shape constraints (appendix D.1)

Additional L-shape constraints (appendix D.3)

Additional stair-shape constraints (appendix D.4)

Handling positive cones (section 5)

Fig. 4. The pipeline for generating the polygon is divided into two parts.
Part I traces a special seam over the surface, and it consists of four steps.
Part II solves a MILP, which returns the polygon angles and edge lengths.
Each section in this part adds linear constraints to the MILP except for the
last one, which suggests an acceleration scheme. Setting loop holonomies is
optional, and the 1-torus is treated as a special case with additional set of
special constraints.

[Campen, Shen, et al. 2019], the method is limited to cone degree
≥ 2 (definition 3.1).
Since a self-overlapping polygon can be extracted from the layout

of a quad mesh, methods that combinatorially construct a quad
mesh are relevant to our problem. Grunbaum [1969] generates a
quad mesh for a given set of singularities. The paper targets only
sphere-topology surfaces and is limited to cone degree ≥ 3. Similarly,
Jucovič and Trenkler [1973] generate a quad mesh with the same
restriction on the cone degree but for any surface topology. Both
papers are purely theoretical: no clear algorithms are given for
the suggested constructions, and there are no implementation or
experimental details.
Levi [2022] offered the first practical method to treat the full

pipeline and showed final optimized mapping results in extensive
experiments. The experiments revealed a practical issue that arises
in the remainder of the pipeline when using an arbitrary (full) self-
overlapping polygon, e.g. one that has been extracted from a quad
mesh layout. The issue is that mapping to an arbitrary polygon
may result in nearly collapsed triangles, from which a subsequent
optimization method cannot recover. The paper overcomes these
issues by taking a different approach of directly constructing a com-
pact self-overlapping metapolygon. The metapolygon is optimized
using a special routine, which does not scale well to treat large
(full) polygons, before proceeding with mapping the interior and
the remainder of the pipeline. The method proposed can handle any
type of cones (including 1-cones and 2-cones), but it is limited to
genus zero.

None of the works mentioned so far can guarantee the prescrip-
tion of holonomies of non-contractible loops (other than the 90◦-
multiple constraint that follows naturally from seamlessness). In
a concurrent work, Shen, Zhu, et al. [2022] adapt the conformal-
based method in [Campen, Shen, et al. 2019] to prescribe (with some
limitations) holonomies of non-contractible loops with guarantees.

The work of Myles, Pietroni, et al. [2014] is relevant to our context
since it provides guarantees for mapping injectivity. It starts by
tracing a motorcycle graph over the surface to create an initial quad
patch partition. This is followed by an algorithm to modify the quad
layout structure to ensure consistent parametric lengths. Finally,
each patch is mapped to create an initial locally injective mapping.
While the algorithm guarantees a valid mapping for any given
field, it does not guarantee to preserve the input field singularities.
Specifically, it may add cones to the final mapping, thus violating our
requirement to find a mapping for a given set of cones, which were
obtained, for example, by post processing (e.g. to ensure minimal
cone distance) or careful placement by an artist. Because the method
traces a given field, it is likely to produce a mapping with similar
loop holonomies, but there is no guarantee of that. Apart from that,
the method generates a mapping that contains nearly collapsed
triangles. If nothing else, [Myles, Pietroni, et al. 2014] provides a
base for comparison.

Herein, we generalize [Levi 2022] to surfaces of any genus. More-
over, we take advantage of the direct control over the metapolygon
our method provides to set non-contractible loop holonomies.



Seamless Parametrization with Cone and Partial Loop Control • 0:5

3 BACKGROUND
A cone singularity of a triangle mesh translates into a singular
vertex in the generated quadmesh, with corresponding graph degree.
Considering the relation between cone singularities in a cross field
and quad mesh singularities, we will use the following definition.

Definition 3.1. A 𝑘-cone is a cone singularity that has the equiva-
lent following properties:
• A corresponding vertex with graph degree 𝑘 in the (generated)

quad mesh (or quad degree for short).
• A (domain/field) cone angle 𝑘 · 90◦.
• Field index 1 − 𝑘

4 if it is an inner vertex, and 1/2 − 𝑘
4 if it is a

border vertex. The field index determines if a cone is negative or
positive (field index, and zero means it is a regular vertex).

• (Domain) angle defect 360 − 𝑘 · 90◦ if it is an inner vertex and
180 − 𝑘 · 90◦ if it is a border vertex.

In the figures, the vertices are color coded: 3-cones in red, 5-cones
in blue, 6-cones and higher (quad) degree in black, 2-cones and
1-cones in magenta, and special regular vertices in green.

3.1 The Sphere Case
We summarize the proposed algorithm for the sphere case in [Levi
2022]. The input to the algorithm is a mesh (sphere topology) with
prescribed (desired) cone singularities. The output is a locally injec-
tive seamless parametrization with the corresponding cone angles.
The main part of the algorithm is constructing a domain polygon,
and we start by recalling some related definitions.

Definition 3.2 (polygon). We will use the term polygon to refer to
the domain boundary polygon of a mapped disk (cut mesh).

Definition 3.3 (metagraph). We define cones and possibly a single
special regular vertex as metavertices. A meta-edge between two
metavertices will refer to a path of regular vertices (that are omitted
from the description) between them. Metavertices and meta-edges
constitute a metagraph.

Definition 3.4 (metapolygon). A description of a boundary poly-
gon that consists only of copies of metavertices. It is a cut of the
surface along a seam metagraph and laid out in the plane. It satisfies
seamlessness constraints and respects the (total) cone angles of the
corresponding surface vertices. We distinguish it from a full polygon
that also includes all the copies of regular vertices on the boundary
of the cut mesh (the seam).

Definition 3.5 (polygon vertex angle). In the context when there is
no triangulation (the interior is not mapped yet), the angle 𝛼 at a
(CCW-oriented) polygon vertex is the internal angle between the
two incident edges. The internal (unsigned) angle 𝛼 of a polygon
(or polyline) vertex is to the left of the incident edge vectors.

Definition 3.6 (monotone polyline). A polyline is monotone with
respect to a direction 𝑑 if the (unsigned) angle between a polyline
edge direction and 𝑑 is at most 90◦.

See inset for illustration of a polyline vertex angle (top) and a
monotone polyline (bottom).

Definition 3.7 (field index of a set of cones). The field index, or
index for short, of a set of cones is the sum of (field) indices of the
cones in the set. The definition applies recursively to a set of sets of
cones. We define the index function idx (·) that returns an index of
a cone or a cone set.

d

αWhile [Levi 2022] worked with field index,
e.g. in the context of grouping cones into sets
of total field index 0 (used to enforce poly-
line monotonicity), we work more accurately
with defect.

Definition 3.8 (domain defect). By defect,
we will refer to domain defect by default, and its units are 90◦. Let
𝑣𝑖 be the 𝑖th polygon vertex (a cone copy) with (inner) angle 𝛼𝑖 . We
define the defect function as:

Δ (𝑣𝑖 ) := 2 − 𝛼𝑖

90◦
. (1)

Let 𝑣 be a cone (on the surface) with seam graph degree 𝑛. Let 𝛼 be
its (prescribed 90◦-multiple) angle and {𝑣𝑖 } be the set of its 𝑛 copies.
We define its defect as:

Δ (𝑣) :=
𝑛∑︁
𝑖=1

Δ (𝑣𝑖 ) = 2𝑛 − 𝛼

90◦
= 2𝑛 − 4

(
1 − idx (𝑣)

)
. (2)

The defect of a set of cones is the sum of cone defects, and the
definition applies recursively to a set of sets of cones.

Definition 3.9 (balanced set). We will call a set with index zero a
balanced set. By balancing a set, we will refer to making its index
zero. When we discuss connections in section 4, we will also use
the term balancing the defect of a set, which will refer to setting
its defect to zero. From context, it will be clear what we refer to by
balancing, or else it will be noted explicitly.

In our construction, since the seam is a single connected compo-
nent, sets with index zero have the required two connections to set
their defect to zero (see section 4.3). Hence, it will be convenient to
consider a (connected) balanced set as having both index zero and
defect zero (as implicitly assumed in [Levi 2022]).

The heart of the algorithm that was proposed in [Levi 2022] is the
construction of a self-overlapping polygon, which is necessary for
a locally-injective mapping [Weber and Zorin 2014]. Identifying a
self-overlapping polygon is not an easy task, much less constructing
one. However, a simple polygon is trivially self-overlapping.

The approach that [Levi 2022] takes is to construct a simple poly-
gon. This is done by first constructing a special seam that ensures
that the seam degree of each cone is in a proper range: a cone has
enough copies to partition its angle between them such that each an-
gle is ≤ 360◦, as required from a simple polygon. Cones are grouped
into balanced sets, and their copies are (mostly) in consecutive or-
der in the polygon. This permits angle assignment that ensures
monotone polylines. The defect of a (connected) balanced set is
zero, and the number of left turns in its polylines equals the number
of right turns. If the right and left turns are synchronized prop-
erly, then monotonicity can be achieved. Constructing the polygon
from monotone polylines prevents self-intersections and ensures
its simplicity.
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Fig. 5. An example of the sphere case. Top: the (uncut) seam graph (over the
surface). An auxiliary regular vertex in green, a 3-cone in red, and a 5-cone
in blue. Bottom: the domain metapolygon after cutting the seam at the top
image. Left : the foundation set that is composed of eight 3-cones and an
auxiliary regular vertex (defect 0). Right : the foundation set with an added
pair of {3,5}-cones that contributes to the polygon two monotone polylines.
For more details, see [Levi 2022, figure 11].

A simple example is a balanced set with {3, 5}-
cones. On the surface, the seam goes through the
set’s cones consecutively. When the seam is cut,
the copies of the set appear on two polylines, each
containing a series of polygon vertex angles. Since
the set is balanced, we can assign angles to the set
copies such that the number of left turns is equal to
the number of right turns in each polyline, creating
two monotone polylines; see inset. Notice that the total defect of
each polyline is zero. Moreover, the defect of each sequence of angles
is in [−1, 1], which ensures monotonicity.
A simple polygon has turning number 1 or defect 4 (360◦). Ac-

cording to the Poincaré–Hopf theorem, there must be a set of cones
that cannot be balanced, with index equals to 𝜒 (the Euler charac-
teristic), which we term a foundation set. Its copies constitute the so
called foundation polygon, which is a minimal simple polygon that
accounts for the turning number.

Definition 3.10 (foundation set). A foundation set on a closed
surface of genus 𝑔 is a (minimal) set of cones with index 𝜒 = 2 − 2𝑔,
whose copies comprise the foundation polygon. According to the
Poincaré–Hopf theorem, the total index of all vertices of a surface
is 𝜒 , hence there must be such a subset.

Definition 3.11 (foundation polygon). Ametapolygon that consists
only of the vertex copies of a foundation set.

Monotone polylines of balanced sets are added to the foundation
polygon, where monotonicity keeps the polygon simple; see fig. 5
for illustration. In the following, we describe the steps of the pipeline.

Creating the foundation polygon. A foundation set of cones is iden-
tified, where there are 10 possible sets [Levi 2022, section 5]), and

a foundation polygon is constructed. The metapolygon is arbitrary,
and all 10 options are provided. (In practice, it is not constructed
explicitly, and only its angle assignment—given as a simple rule—is
used later when constructing the metapolygon for all the cones.)

Forming the sets. After identifying the foundation set, the rest of
the cones are divided into balanced sets. The purpose, again, is to
add them to the polygon as monotone polylines that will not violate
its simplicity.

The seam is traced to connect the sets. The tracing is done accord-
ing to specific refinement rules that keep the refinement moderate.

Assigning polygon angles and edge lengths. Once the seam is cut,
a boundary metapolygon emerges, but we only have the order of
its vertices. A linear program is solved for the polygon’s angles that
ensure polyline monotonicity. A second linear program is solved
for valid edge lengths.

Improving the polygon. To increase the quality of the mapping,
the metapolygon is improved by maximizing the minimal angle of
its triangulation that is used as convex subdomains for mapping the
interior (non-boundary vertices) in the next step. If a triangulation
contains a sliver (with an angle close to zero), then mapping into
such a subdomain (with the sliver as boundary) is bound to result
in (nearly) collapsed triangles, which would pose a challenge (due
to numerical issues) in the final optimization.
The algorithm is based on nonlinear programming, and it does

not scale well. Therefore, it is imperative that it is applied to a (small,
coarse) metapolygon rather than a full one.

Mapping into a self-overlapping polygon. [Levi 2022] offers a
scheme similar to [Shen, Jiang, et al. 2019] to map the interior of
the mesh. Another alternative is dual-harmonic mapping [Weber
and Zorin 2014].

Simplifying and optimizing the mapping. The initial valid mapping
is optimized to lower distortion using state of the art, e.g. [Shtengel
et al. 2017]. While distortion is lowered, most, if not all, of the
refinement that was introduced when tracing the seam is removed.

Our algorithm takes a similar approach, using a similar pipeline.
The input to the algorithm is a closed mesh of genus ≥ 1 with
prescribed (desired) cone singularities and non-contractible loop
holonomies. The output is a locally injective seamless parametriza-
tion with the corresponding cone angles that are satisfied exactly
and holonomies that may be fulfilled only partially. We begin by
constructing a simple foundation metapolygon that accounts for
𝜒 and the polygon turning number. In the sphere case, there are
only 10 possible foundation sets, and an arbitrary construction was
offered for them. However, this number grows with the genus. More-
over, for genus > 0, non-contractible loops come into play, and they
balance cone index.
Solving for the metapolygon angles and edge lengths is done

simultaneously due to the presence of non-contractible loops that
may lead to polygon configurations with valid angles that do not
have corresponding edge lengths.
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Incorporating non-foundation cones is done similar to the sphere
case, using balanced cone sets, and poses no further complication
except for the special case of genus 1.
Once the metapolygon is constructed, the rest of the pipeline

proceeds unchanged. In summary, the focus of this paper is to
construct a simple self-overlapping (foundation) polygon for a mesh
of genus ≥ 1.

3.2 Additional Definitions
We handle a closed surface of genus 𝑔, a 𝑔-torus, that has a basis of
2𝑔 non-contractible loops. We will refer to these simply as loops. In
the following sections, we treat the case of 𝑔 ≥ 2 and defer the case
of 𝑔 = 1 to appendix D.

Definition 3.12 (tunnel and handle loops). A closed surface M
separates R3 into two parts: interior I and exterior O such that
I ∩ O = M and I ∪ O = R3 . A loop onM is a handle loop if it is
trivial in I but non-trivial in O. Similarly, it is a tunnel loop if it is
trivial in O but non-trivial in I. For details and illustration see [Dey
et al. 2013, section 2.1].

The input to the algorithm is 𝑔 (out of 2𝑔) disjoint loops, e.g. 𝑔
tunnel loops. These loops can be acquired by different means (we
used [Dey et al. 2013]), and they are not related to the problem
nor require user intervention. The algorithm traces additional 𝑔 (e.g.
handle) loops that complete a non-contractible loop basis. The result
is 𝑔 double loops.

Definition 3.13 (double loop). A double loop is a pair of loops that
is composed of a tunnel loop and its associated handle loop, which
(inevitably) intersect.

Definition 3.14 (modifying a loop to pass through a vertex). Let ℓ
be a loop and 𝑣 be a vertex. The operation of modifying ℓ to pass
through 𝑣 refers to finding a loop ℓ′ that passes through the vertex
such that:
• ℓ and ℓ′ are in the same homotopy class, ℓ′ ∈ [ℓ].
• In addition to passing though 𝑣 , ℓ′ passes through the same set

of metavertices (cones) that ℓ passes through, and it preserves its
intersections in the seam graph (except possibly at 𝑣).

Definition 3.15 (unit triangular matrix). A lower triangular matrix
filled with ones (on the diagonal and below).

For some of the constraints in the (integer or mixed integer) linear
programming problems, we hint that they were formulated using
the Big M constraint approach [D.-S. Chen et al. 2010, section 3.6.1].

4 SEAM CONSTRUCTION FOR NEGATIVE FIELDS
We begin by describing the construction of our special seam for an
input field that consists of a set of negative cones (only), which we
term negative fields. In this setting, the foundation set consists of all
the cones in the field.

For a 1-torus, there is only one cone set, the empty set. For genus
𝑔 ≥ 2, the number of negative cone sets grows with the genus. For
example, for genus 2–5, the number of possible negative sets in each
case is 22, 231, 1,575, and 8,349 respectively (10,177 in total). Unlike
the sphere case, which has only 10 cases that could be handled
arbitrarily, here a more methodical approach is needed. For low

genus, the number of cases is still reasonably low, and we use that
later to perform exhaustive testing of the method.
To generalize the approach and reduce the infinite number of

cases that need to be handled, we perform two simplifications. The
first simplification is to group cones (that may have fractional index)
into sets with integral total index.

Definition 4.1 (cset). A cset (short for cone set) is a set of cones.
We will use two types of csets:

(i) A negative-dominant cset that consists of a single negative
cone and possibly additional positive cones. The index of
the cset is negative. The foundation set is partitioned into
negative-dominant csets.

(ii) A balanced non-foundation cset.

The concept of a cset is introduced to conveniently incorporate
positive cones later (section 5) with minimal modification to an
algorithm that expects negative cones only.

Definition 4.2 (iset). An iset (short for integer set) is a set of csets.
Its index is integral and equals the sum of the csets’ indices. An iset
is either odd or even, depending on its index.

The second simplification is to divide the csets into isets that are
classified and treated based on their index modulo 2. An iset’s index
is adjusted to be modulo 2 by assigning to it double loops, each
equivalent to index 2 (section 4.3). Details are given in definition 4.7.
Our objective becomes creating balanced isets (by connecting

their cones with the seam), which have adjusted index 1 or 2.

Definition 4.3 (balanced iset). A balanced iset will refer to an iset
with index zero (total index of cones and double loops) and defect
zero (connected).

The allotted (determined by the genus) double loops balance all
isets except for either one or two (section 4.3). These exceptional
isets are termed corner isets (definition 4.5), and they contain excess
defect that accounts for the metapolygon’s turning number 1 (total
angle defect 360◦). All other balanced isets add monotone polylines
(each has total angle defect 0◦, i.e. like a straight line, there is no
change of direction) to the foundation polygon.
The two simplifications above reduce the number of iset cases

from infinite to 76 (section 4.5). This small number of cases are
handled conveniently with a specialized integer linear program (ILP).
This section describes how to trace the seam over the surface,

connecting the cones and non-contractible loops into a single con-
nected component, which is summarized next. First, the isets are
formed (section 4.1). Then, connections are assigned.
We distinguish between two forms of connections: an external

connection that connects between two cones from two different isets
(i.e. connects two isets), and an internal connection that connects
cones from the same iset. A chain of isets is created, which assigns
corners and external connections to the isets (section 4.4). This is
followed by assigning internal connections (to cones) in each iset
(section 4.5), which ensures the necessary connectivity and defect
for each cone (section 4.3). This is done through solving an ILP,
which also assigns (iset) external connections to specific cones in
the iset.
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Initially, connections are only assigned (to isets and cones). Af-
ter the connection assignment is complete, the specific pairing of
connection ends and the tracing itself are performed (appendix A).
The only exception to that is an external joint-loop connection (sec-
tion 4.2) between an odd pair of isets in alg. 2, which is immediately
traced over the surface.
The ability to assign only a connection end to a cone and defer

the decision of which cone it is connected to and via what path
comes from the combinatorial nature of the algorithm. From the
algorithm point of view:
• All cones of the same degree are the same.
• All free loops (definition 4.4) are the same.
• All homotopic paths are the same.
Therefore, if we have, for example, an iset with four cones, where
each is assigned an internal tree connection (section 4.2), then it
does not matter between which cones the two tree connection paths
are traced as long as each cone receives a single tree connection.
Similarly, when assigning external tree connections in an odd iset
chain (section 4.4), the order of the isets in the chain does not matter
as long as each iset receives its assigned amount of connections.
Similar to [Levi 2022], the combinatorial nature is exploited to

keep the seam short. When part of the seam-construction algorithm
requires a cone, an arbitrary free one—that has not been connected
to the seam yet—with the requested quad degree is picked. Later,
before tracing the first connection path to the cone (e.g. bymodifying
a loop to go through it or connecting it to another cone), the cone is
replaced with a different free cone (if there is one) of the same quad
degree that is closest to the source of the path (or loop). A similar
approach is taken with the free loops that have no “identity” until
connected (definition 4.4).

4.1 Forming the Isets
We partition the foundation set into negative-dominant csets (defi-
nition 4.1). This is trivial under the current setting (a negative field):
we create a cset for each cone. Next, we divide the csets into isets
(definition 4.2), which is described in alg. 1.

Alg. 1 groups cones into isets, according to the fraction part of
their index (specifically, their index modulo 0.25). It distinguishes be-
tween seven types of isets, and it operates in a greedy way, covering
all possible options.

4.2 Connection Types
Before specifying how to connect the cones, we describe in this
section the types of (graph) connections that we use. The variety of
connection types provides the flexibility of how to divide a given
number of connections between cones.

Definition 4.4 (loop ownership). In the algorithm, we assign a
double loop to a vertex (or two vertices in the case of a joint loop
below), which becomes its owner. Connecting an assigned double
loop to its owner is done by modifying the loop to pass through the
vertex (definition 3.14). A specific double loop that will be connected
is chosen arbitrarily from the pool of free loops—loops that are not
yet owned by and connected to any metavertex—which is initialized
to the 𝑔 input loops (each representing a double loop). A second
loop is traced such that the vertex (or two vertices in the case of a

Algorithm 1: Forming the isets
Input: a set of foundation csets
Output: a set of isets

1 Partition the csets into four queues 𝑄0, . . . , 𝑄3, according to
their index modulo 0.25

2 while ∃𝑖 , |𝑄𝑖 | > 0 do
3 Create a new iset 𝐼
4 if |𝑄0 | > 0 then // 0
5 𝐼 .add( 𝑄0.pop() )
6 else if |𝑄3 | > 0 and |𝑄1 | > 0 then // 0.75 + 0.25
7 𝐼 .add( 𝑄3.pop() )
8 𝐼 .add( 𝑄1.pop() )
9 else if |𝑄3 | > 1 and |𝑄2 | > 0 then // 2 × 0.75 + 0.5
10 for 𝑗 ← 1 to 2 do
11 𝐼 .add( 𝑄3.pop() )
12 𝐼 .add( 𝑄2.pop() )
13 else if |𝑄3 | > 3 then // 4 × 0.75
14 for 𝑗 ← 1 to 4 do
15 𝐼 .add( 𝑄3.pop() )

16 else if |𝑄2 | > 0 then
17 𝐼 .add( 𝑄2.pop() )
18 if |𝑄2 | > 0 then // 2 × 0.5
19 𝐼 .add( 𝑄2.pop() )
20 else // 0.5 + 2 × 0.25
21 for 𝑗 ← 1 to 2 do
22 𝐼 .add( 𝑄1.pop() )

23 else // 4 × 0.25
24 for 𝑗 ← 1 to 4 do
25 𝐼 .add( 𝑄1.pop() )

a

b

c

d
e

Fig. 6. Connection types. Vertex 𝑎 owns a double loop. Vertices 𝑎 and 𝑏 are
connected via a 0-2 connection, where 𝑎 is the provider, and 𝑏 is the receiver.
Vertices 𝑎 and 𝑐 are connected via a tree connection. Vertices 𝑑 and 𝑒 are
connected via a joint-loop connection.

joint loop below) is at the intersection of the two loops. A set that
contains a vertex that owns a double loop is said to own the double
loop.
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The seam is initialized as the 𝑔 input disjoint loops, and 𝑔 more
loops are traced by the algorithm. These are primal closed paths
that are marked as seam, e.g. fig. 7(a). The final seam that is traced
over the surface connects the cones and passes through a basis of
2𝑔 non-contractible loops, thereby cutting the surface into a disk,
with all cone copies on its boundary. We define four types of con-
nections (meta-edges between cones) and list their contribution to
the graph degree of the cones that are involved in them. See fig. 6
for illustration.

A double-loop connection. A vertex that owns a double loop serves
as the base point—the intersection of the two loops. It can be viewed
as a (double) self-connection. A double-loop connection consists of
four connections, and the contribution to the degree of the vertex
is four. The connection is implemented by modifying one of the 𝑔
input loops (that has not been assigned yet) to pass through the
vertex (definition 3.14). Then, another loop is traced from the vertex
to itself, from one side of the loop to other (without intersecting
other parts of the seam).

A 0-2 loop connection. Connecting a vertex 𝑢 that owns a double
loop with another vertex 𝑣 . One of the two loops is modified to pass
through 𝑣 (definition 3.14).𝑢 is said to provide a 0-2 loop connection,
and 𝑣 is said to receive one. The same terminology applies to sets
containing the vertices. The contribution to the degree of 𝑣 is two.
There is no contribution to the degree of 𝑢.

A tree connection. Connecting two vertices via a seam metagraph
edge, which contributes one to the degree of each vertex.

A joint-loop connection. Connecting two vertices 𝑢 and 𝑣 via a
double loop. The two vertices share ownership of the double loop.
The contribution is three to the degree of each vertex. When con-
necting the assigned double loop, a free input loop is selected, e.g.
a tunnel loop 𝑡 . We modify 𝑡 to pass through 𝑢 and then through
𝑣 (definition 3.14). We trace a new handle loop ℎ from 𝑢 to 𝑣 that
starts on one side of 𝑡 and ends on the other. When tracing ℎ (as a
path over the surface), we avoid intersecting other parts of the seam
(except for the path’s end points). Since the other 𝑔−1 disjoint loops
are marked by the seam and we avoid intersection with other parts
of the seam, tracing a path from one side of the loop to the other
results in a loop in the correct homotopy. The two loops overlap,
and in a generated abstract graph drawing they look like three edges
between 𝑢 and 𝑣 (each vertex receives three connections), e.g. see
fig. 8 (right), which contains three joint-loop connections.

4.3 Connections and Defect
Our metapolygon has three possible angles: 90◦, 180◦, and 270◦.
As a simple cycle, it has defect 4 (angle defect 360◦). Four polygon
vertices will be picked, designated as corners, and assigned 90◦. The
four (meta)polylines between these corners will be monotone, and
the first and last edges in each of the four polylines will have the
same direction. The metapolygon could be visualized as a coarse
rectangle if we scale up the meta-edges that are incident to the four
corners and scale down the rest of the polygon edges (e.g. fig. 10(e)).

We will refer to the four polylines between corners as rectangle
edges.

Definition 4.5 (corner iset). An iset with defect > 0. The number
of corners in an iset (in all of its domain polylines) equals its defect.

Alg. 2 in section 4.4 designates either a single corner iset (contain-
ing four corners) or two corner isets (each containing two corners),
depending if there is an odd iset (or they are all even). The total
defect of corner isets will be 4, and the rest of the isets will have
defect 0 (proposition 4.8). This puts the total defect of the polygon
at 4, as required from a self-overlapping polygon (turning number
1).

The polygon is simple. Edge monotonicity ensures that there are
no (local) intersections (and the additional constraints in appen-
dix B ensure this globally). The defect plays an important role in
guaranteeing monotonicity. Specifically, vertex sequences along the
four rectangle edges have defect in [−1, 1]. A cone’s defect depends
on its angle and (seam) degree (see definition 3.8). Cone angles are
given (as input), and our special seam sets the proper degree of a
cone to ensure that its defect is in the correct range.
From eq. (2), to balance the defect of a vertex 𝑣 (i.e. Δ (𝑣) = 0)

with integer index, we need to set its graph degree (number of
connections) to

𝑛 = 2
(
1 − idx (𝑣)

)
. (3)

For example, a regular cone (idx (𝑣) = 0) requires two connections
to balance its defect. Each connection (which adds one to a vertex
degree in the seam graph) balances (sets the defect to zero) 180◦ or
field index 0.5. In other words, increasing a cone’s angle by 180◦ and
adding a connection to it preserves its defect. For example, owning
a double loop, which contributes four connections to the cone that
owns it, has the effect of adding two to the cone’s index.

4.3.1 Some Examples. We demonstrate the defect concepts with
some examples.

Example 1. A 2-torus (two double loops) with a 12-cone. As-
signing a double loop to the cone (definition 4.4) sets its defect
to 2 · 4 − 4 (1 + 2) = −4, and it requires two more connections to
balance its defect. Assigning the second double loop to the cone
gives it two connections more than required for balancing, and sets
its defect to 4. Four of the cone’s copies are designated as corners;
see fig. 3.

Example 2. A 2-torus with two 8-cones. Assigning a double loop
to each cone balances its defect, but the seam remains disconnected.
Connecting the two cones with a tree connection connects the two
seam parts into a single component. The additional tree connection
sets the defect of each cone to 2, and two copies of each cone are
designated as corners; see fig. 7.

Example 3. A 3-torus (three double loops) with a 20-cone. Assign-
ing the three double loops to the cone sets its defect to 2 · 3 · 4 −
4 (1 + 4) = 4. Four of the cone’s copies are designated as corners;
see fig. 9.
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(a)

(b)

(c) (d) (e)

Fig. 7. A simple example of a 2-torus with two cones. The input is two 8-cones and two tunnel loops (a). A cset is created for each cone. Using alg. 1, an iset is
created for each cset. Using alg. 2, an iset chain is created, assigning four corners and external connections to the isets. According to their index, the two isets
are odd. Each of them is assigned a double loop, an external tree connection, and two corners. The problem in eqs. (4) to (10) is solved to determine the internal
connections of each iset (since each iset consists of a single cone, the solution is trivial in this case). The table in (b) shows the results for one of the isets,
where both isets share the same characteristics. The table shows for an iset the assigned connections of a single cone of index -1: one double-loop connection
and one external tree connection. The defect of each iset is 2, which accounts for two corners, and their total defect accounts for turning number 1 of a
self-overlapping polygon. The connection graph is shown (c), and connections are traced over the surface following appendix A, where the isets are externally
connected via a tree connection. (d) shows a top and a bottom view of the traced seam over the surface. The seam is cut, and the problem in section 6 is solved
to determine the metapolygon angles and edge lengths (e). Four corners are marked with squares. Meta-edges between corners are monotone. Copies of the
same cone are in consecutive order along the polygon.

Fig. 8. An odd and an even chain on a 5-torus (𝜒 = −8). Each iset is made
up of a single cone. Corner isets are marked with a dashed circle, and
all other isets are balanced. (Left) an even chain of four 12-cones. Each
iset owns a double loop, and the corner iset owns an extra double loop to
account for turning number 1. External connections between isets are 0-2
loop connections. (Right) an odd chain of eight 8-cones. Each corner iset
owns a double loop. Otherwise, each odd pair of two cones owns a double
loop and is connected via a joint-loop connection. Iset corners and odd pairs
are connected via tree connections.

We generalize these examples in the next section by constructing
an iset chain.

4.4 Assigning Corners and External Connections to Isets
In the following, we create a chain of isets that consists of isets
with defect zero and one or two corner isets. The chain sets the
external connections between the isets; see fig. 8. It pairs up odd isets
and places corner isets at chain ends. This section gives details for
the chain construction, and the proof of correctness is deferred to

proposition 4.8 after specifying the internal connections (section 4.5)
and fully describing the seam.
As an intuition for this step, one can view the isets at this point

as containing a single cone each. This step sets the connections
between them to achieve the necessary defect. In the next section,
the isets are generalized to contain up to four cones each, we solve
for their internal connections, and the connections that are set in
this section are treated as external.
If there are no odd isets, then the iset chain is (all) even. In this

case, we assign four corners to the first iset in the chain (chosen
arbitrarily) as well as a double loop to adjust its defect (and it will
have defect 4 when fully connected). External connections between
isets in the chain will be made via 0-2 loop connections.

If the chain is not (all) even, then there are at least two odd isets.
We assign to each of them two corners as well as a double loop
to adjust its index (each odd corner iset will have defect 2 when
fully connected). Each of the two corner isets is placed at an end
of the iset chain (and will be connected to the rest of the chain via
an external tree connection). We divide the rest of the odd isets
into pairs and connect the two isets in each pair with an external
joint-loop connection. For each iset in a pair, we designate its cset
with the lowest (negative) adjusted index (definition 4.7) as the first
cset and use it for the joint-loop connection. This is a greedy choice
of assigning the external connection to a cset that needs connections
the most to balance its defect. All the odd pairs, corner isets, and
even isets are assigned external tree connections.

Definition 4.6 (odd pair). A pair of odd isets that are connected
with an external joint-loop connection.

At this point, only external joint connections are made, and the
rest of the connections types are set as attributes. The full algorithm
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Algorithm 2: Assigning corners and external connections
Input: isets 𝐼0, . . . , 𝐼𝑛−1
Output: assigned corners and connections

1 Sort the isets, prioritizing odd (field) index
2 𝑏all_even ← false
3 𝑖 ← 1
4 while 𝑖 ≤ 𝑛 do
5 𝐼 ← 𝐼𝑖

6 if idx (𝐼 ) mod 2 = 0 then // even
7 if i = 1 then // first
8 𝑏all_even ← true
9 𝐼 .loop4conn← 1

10 if 𝑛 > 1 then
11 𝐼 .loop0conn← 1
12 𝐼 .corners← 4
13 else
14 if 𝑏all_even then
15 if 𝑖 < 𝑛 then // not last
16 𝐼 .loop0conn← 1
17 𝐼 .loop2conn← 1
18 else
19 𝐼 .tree1conn← 2

20 else // odd
21 if 𝑖 ≤ 2 then // first two
22 𝐼 .loop4conn← 1
23 𝐼 .tree1conn← 1
24 𝐼 .corners← 2
25 else
26 𝑖 ← 𝑖 + 1
27 𝐽 ← 𝐼𝑖

28 𝐼 .tree1conn← 1
29 𝐽 .tree1conn← 1
30 Connect 𝐼 and 𝐽 with a joint loop // odd pair

31 𝑖 ← 𝑖 + 1

for assigning corners and external connections to the isets is de-
scribed in alg. 2. In the algorithm, the attributes associated with an
iset are the following:

• tree1conn: the number of external tree connections to the iset.
• loop4conn: the number of double loops that are owned by the

iset.
• loop2conn: the number of external 0-2 loop connections (sec-

tion 4.2) that the iset receives.
• loop0conn: the number of external 0-2 loop connections that

the iset provides.
• corners: the number of corners in the iset (definition 4.5).

4.5 Internal Connections of an Iset
Given an odd or even iset 𝐼 (and its assigned external connections),
which consist of 𝑛 (which is four at most according to alg. 1) csets 𝑐𝑖 ,
we describe how to assign its internal connections. The assignment
involves the small integer linear program (ILP) in eqs. (4) to (10). The
solution specifies the number of connections of each type that are
assigned to each cset. The main objective of the ILP is to maintain
metagraph connectivity (a single connected component) and the
defect of each cone in the required range for monotonicity (eq. (4)
and eq. (2)).
The ILP was designed to specifically address the 76 types of

internal iset connections (see proof of proposition 4.8). Therefore,
while it may seem that some cases are overlooked, one needs to
bear in mind that the problem was reduced to handle only these 76
cases. On the other hand, deep understanding of the constraints is
not required for understanding the main algorithm. Therefore, we
provide intuition for the constraints, but we do not go into detail
(e.g. providing specific cases that need to be filtered out), which
would explain the necessity of some of the constraints.

Solving the problem is a convenient way to generate the map
between each of the 76 types and its corresponding internal con-
nection configuration (a vector holding the number of assigned
connections to each cset—the problem solution), which otherwise
can be created manually or acquired from an external source and
used as a constant in an application.

Definition 4.7 (adjusted index). The adjusted index of a cset 𝑐 ∈ 𝐼
is:

idx (𝑐) := idx (𝑐) + 2𝜂 (𝑐) ,

where

𝜂 (𝑐) :=
⌊
idx (𝑐) + 0.1
−2

⌋
is the number of reduced double loops. These are loops that are
connected separately (as double-loop connections) to the negative
cone in the cset (which now owns them) when tracing the con-
nections (appendix A). Since idx (𝑐) ∈ {−0.25𝑘 | 𝑘 ∈ N}, we have
idx (𝑐) ∈ {−0.25𝑘 | 𝑘 = 1, . . . , 8}.

If 𝐼 has an external joint-loop connection (which consists of three
connections), then we need to account for it when solving the prob-
lem. Instead of introducing a new variable for that, we do the fol-
lowing. We first assign an additional double-loop connection to the
iset (++𝐼 .loop4conn). This additional double-loop connection (which
consists of four connections) is assigned in the problem below to
the first cset (which was used for the external joint connection of an
odd-iset pair in section 4.4). Then, to compensate for the connection
difference between a joint-loop connection and a double-loop con-
nection (4 − 3 = 1 connection), we lower the cset’s adjusted index
by 0.5:

idx (𝑐1) := idx (𝑐1) + 2𝜂 (𝑐1) − 0.5 .

Based on the other types of external connections, we define (using
algorithmic notations) the number of external connections of an
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(a) (b) (c) (d) (e)

index -4

adjusted -2

external 0

tree 0

joint 0

loop4 2

loop2 0

loop0 0

defect 4

Fig. 9. A simple example of a 3-torus with a single cone. The input is a 20-cone and three tunnel loops (a). A cset is created for the cone. Using alg. 1, an iset is
created for the cset. Using alg. 2, an iset chain is created (with a single member), assigning four corners to the iset. According to its index, the iset is even. It
is assigned three double loops and four corners. The problem in eqs. (4) to (10) is solved to determine the internal connections of the iset after reducing a
loop and adjusting the cone index (section 4.5). The table in (b) shows the results. The table shows for the iset the assigned connections of a single cone of
adjusted index -2: two double-loop connections. The defect of the iset (with the reduced index) is 4, which accounts for four corners and turning number 1 of a
self-overlapping polygon. Note that due to the loop reduction, this is the same iset case (out of 76 cases) as in fig. 3. The connection graph is shown (c), which
includes the reduced loop, and connections are traced over the surface following appendix A. (d) shows the traced seam over the surface. The seam is cut, and
the problem in section 6 is solved to determine the metapolygon angles and edge lengths (e). Four corners are marked with squares.

iset as

𝑛𝑒𝑥 :=


2 𝐼 .loop2conn > 0
𝐼 .tree1conn 𝐼 .tree1conn > 0
0 else

,

and the iset’s adjusted “local genus” as

𝑔 := 𝐼 .loop4conn +

∑𝑛−1
𝑖=0 idx (𝑐𝑖 )
−2

 .
In the following ILP, eqs. (4) to (10), we solve for the number

of connections of each type for every cset in 𝐼 . The constraints
ensure the defect range, consistency with the genus, and general
connectivity expectations such as having a single connected compo-
nent. Vector constraints are element-wise. A stand-alone constant is
treated as a vector of the appropriate size (inferred from the context).
The problem variables are:
• 𝑥𝑙𝑝4 ∈ N𝑛

0 is the number of double-loop connections in each cset.
• 𝑏 𝑗𝑛𝑡 , 𝑏𝑡𝑟 , 𝑏𝑒𝑥 ∈ Z𝑛2 indicate if each cset has a joint connection, a

tree connection, and all the assigned external connections (re-
spectively).

• 𝑥𝑙𝑝0 ∈ N𝑛
0 is the number of 0-2 connection providers, and 𝑏𝑙𝑝2 ∈

Z𝑛2 is the number of 0-2 connection receivers.
Each set of constraints is followed by details and explanation.

Some of the constraints define auxiliary variables that are not part
of the problem output.
The problem:

min
𝑏,𝑥

Δ𝑐∞
subject to

(4)

Δ𝑐 ≥ −1 (5a)

1 =
𝑏𝑒𝑥 1 (5b)

𝑔 =

𝑥𝑙𝑝4
1
+
𝑏 𝑗𝑛𝑡 

1
/2 (5c)

• For a 𝑦 ∈ N𝑛
0 ,
𝑦1 = ∑𝑛−1

𝑖=0 𝑦𝑖 .
• Δ𝑐 ∈ Z𝑛 is the defect of the csets (definition 3.8).
• Equation (5a) bounds the minimal defect as required for mono-

tonicity.
• Equation (5b) sets all the external connections (even if there are

zero) to a single cset.
• Equation (5c): 𝑔 equals the number of double loops.
Constraints involving the total number of connections:

𝑥𝑡𝑜𝑡 = 𝑏𝑡𝑟 + 2𝑏𝑙𝑝2 + 3𝑏 𝑗𝑛𝑡 + 4𝑥𝑙𝑝4 + 𝑛𝑒𝑥𝑏𝑒𝑥 (6a)

𝑥𝑡𝑜𝑡 = 4𝑔 + 2 (𝑛 − 1) + 𝑛𝑒𝑥 (6b)

Δ𝑐𝑖 = 2𝑥𝑡𝑜𝑡𝑖 − 4
(
1 − idx (𝑐𝑖 )

)
, ∀𝑐𝑖 ∈ 𝐼 (6c)

• Equation (6a) defines 𝑥𝑡𝑜𝑡 ∈ N𝑛
0 as the total number of connec-

tions in each cset. Each type of connection contributes to a vertex
the number of connections that was specified in section 4.2.

• Equation (6b): The graph of cset connections consists of a tree
with 𝑛 − 1 edges, 𝑔 double-loops (a joint loop can be viewed
as a shared double loop with a tree connection), and external
connections.

• Equation (6c) is derived from eq. (2).
Constraints related to joint-loop connections:

2𝑏 𝑗𝑡𝑟 ≤ 𝑏 𝑗𝑛𝑡 + 𝑏𝑡𝑟 (7a)𝑏 𝑗𝑛𝑡 
1
≤ 2

𝑏 𝑗𝑡𝑟 
1

(7b)

• Equation (7a) defines 𝑏 𝑗𝑡𝑟 ∈ Z𝑛2 , which indicates if a cset has a
joint-loop connection and a tree connection.

• Equation (7b) ensures that a joint component (two csets connected
by a joint loop) is connected to the rest of the graph—to the other
csets (via a tree connection)—where

𝑏 𝑗𝑛𝑡 
1
/2 is the number of

joint components.
Constraints related to 0-2 loop connections:

𝑏𝑙𝑝0 ≤ 𝑥𝑙𝑝0 ≤ 4𝑏𝑙𝑝0 (8a)
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1
=

𝑏𝑙𝑝2
1

(8b)

𝑏𝑙𝑝02 ≤ 𝑏𝑙𝑝0 + 𝑏𝑙𝑝2 ≤ 2𝑏𝑙𝑝02 (8c)

2𝑏𝑡𝑟02 ≤ 𝑏𝑡𝑟 + 𝑏𝑙𝑝02 (8d)

4
(
1 − 𝛽0

)
≥
����𝑏𝑙𝑝01 − 𝑛 + 1���� (8e)𝑏𝑙𝑝0

1
≤
𝑏𝑡𝑟02

1
+ 4𝛽0 (8f)

1 ≤ 𝑥𝑙𝑝4 + 4
(
1 − 𝑏𝑙𝑝0

)
(8g)

• Equation (8a) bounds 𝑥𝑙𝑝0. 𝑏𝑙𝑝0 ∈ Z𝑛2 indicates if a cset 𝑐𝑖 is a 0-2
connection provider ( 𝑥𝑙𝑝0

𝑖
> 0 ). Four is a bound on 𝑛, which is

the maximum number of csets in an iset (alg. 1).
• Equation (8b): the number of 0-2 connection providers equals the

number of receivers.
• Equation (8c) defines 𝑏𝑙𝑝02 ∈ Z𝑛2 , which indicates if a cset belongs

to a 0-2 component (which is composed of a provider and a
receiver).

• Equation (8d) defines𝑏𝑡𝑟02 ∈ Z𝑛2 , which indicates if a cset belongs
to a 0-2 component and also has a tree connection.

• Equations (8e) to (8g) are formulated as Big M constraints (sec-
tion 3.2).

• Equation (8e) defines a flag 𝛽0 ∈ Z2, which indicates if the csets
in 𝐼 form a (small) even chain, i.e. are connected to each other
only via 0-2 connections.

• If this (small) chain (inside 𝐼 ) is not (all) even, then eq. (8f) ensures
that each 0-2 component is connected to the rest of the graph
(via a tree connection).

𝑏𝑙𝑝0
1
is the number of 0-2 components.

• Equation (8g): A 0-2 connection provider must have a loop.
If 𝑛 > 1, we then add a constraint for minimum connectivity:

1 ≤ 𝑏𝑡𝑟 + 𝑏 𝑗𝑛𝑡 + 𝑏𝑙𝑝0 + 𝑏𝑙𝑝2 (9)

If the first cset is to receive an external joint connection, we then add
a constraint to ensure it receives the extra double-loop connection:

1 ≤ 𝑥
𝑙𝑝4
0 (10)

After the connection assignment, the isets are connected as de-
scribed in appendix A.
Notice that throughout the process, the double loops are dis-

tributed between cones according to their index. The assignment
takes place in the step of assigning external connections (section 4.4)
and when adjusting a cone index by reducing loops and assigning
them to it (definition 4.7). The loops provide connections to balance
the index of a cone to adjust its defect.

Proposition 4.8. The algorithm that constructs the seam (section 4)
handles correctly all cases of negative fields: the connection assignment
problem is always feasible, and the traced seam sets the defect of all
isets to zero except for the corner isets, which have total defect 4.

5 POSITIVE CONES
We describe how to construct a seam for fields that also have posi-
tive cones. Foundation positive cones (section 5.1) are added to a
foundation cset, which adjusts its index, and no further treatment

is needed. Non-foundation positive cones (section 5.2) are grouped
with negative cones to form balanced csets.

We begin by identifying the foundation set. Let𝑑 be the maximum
cone degree in a fieldwith𝑛 cones. Let ℎ̂ ∈ N𝑑

0 be the cone histogram,
classified by cone degree. Define a vector of weights𝑤 ∈ N𝑑 ,

𝑤𝑖 :=

{
100 1 ≤ 𝑖 ≤ 3
1 else

that corresponds to the histogram. We solve an ILP for a histogram
ℎ ∈ N𝑑

0 of the foundation set:

min
ℎ

𝑤⊺ℎ (11a)

s.t. ℎ ≤ ℎ̂ (11b)
𝑑∑︁
𝑗=1

ℎ 𝑗

(
1 − 𝑗

4

)
= 𝜒, ∀𝑐𝑖 ∈ 𝐼 (11c)

We minimize the number of cones, where a larger penalty is given
to positives.

Given a histogram, a specific set of cones is picked arbitrarily due
to the combinatorial nature of the algorithm, which was explained
in the end of section 4.

5.1 Foundation Csets
We partition the foundation set into negative-dominant csets (defi-
nition 4.1). We start by creating a cset for each negative cone. Then,
we distribute the positive cones between these csets in a greedy
way:
• We iterate the positive cones, prioritizing large (positive) index.
• We add a positive cone to a cset with the lowest (negative) index.

Proposition 5.1. We end up with negative-dominant csets in the
foundation set.

After forming the csets, we connect each cset internally, where
positive cones are connected as leaves to the negatives (similar
to [Levi 2022, section 7]). We proceed with creating isets for the
foundation csets (section 4.1), and connections to a cset are made to
its negative cone.

Consequently, in the treatment of the foundation set, the general
problem of a field containing positive cones is reduced to the setting
of negative fields: a foundation cset with positive cones is treated
as a cset with the negative cone only, but with an increased index
(which equals the total index of the cset).

5.2 Non-foundation Csets
Forming the csets. After identifying the foundation set, the rest of
the cones are divided into non-foundation csets (definition 4.1),
using the same procedure that forms the balanced cone sets (defini-
tion 3.9) in [Levi 2022, section 6]. A cset is created for each negative
cone. Positive cones are added to these csets greedily, prioritizing
csets with lower (negative) index. When needed, csets are united
to decrease their combined field index to balance a free positive cone.

Internal cset connections. In each cset, the negatives (there could
be up to three in a united set) are connected in a chain, and the
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positives are connected to the negatives (greedily prioritizing defect
balancing) via tree connections.

External cset connections. If it is an even chain of foundation isets
(section 4.4), then each non-foundation cset is assigned a 0-2 connec-
tion receiver (made of two connections), and an arbitrary foundation
cset that owns a loop is assigned a 0-2 connection provider. If the
iset chain is odd, then each non-foundation cset is assigned two tree
connections. When tracing the connections in appendix A, each of
the two connections to a non-foundation cset is made to each end
of its negative chain (of one up to three negative cones).

All the non-foundation csets are added to a new (last) iset, which
is connected to the seam using the procedure in appendix A.

5.3 An Illustrative Example
A simple example of a 4-torus with a positive cone is given in fig. 10.
The input is a set of 12 cones, {2, 6 × 5, 2 × 6, 7, 8, 13}-cones, and
four tunnel loops. A cset is created for each negative cone. After
solving eq. (11), nine cones (all negative in this case) are selected
as the foundation set with index 𝜒 = −6. Four foundation isets
are formed using alg. 1. Following section 5.2, the two (negative)
non-foundation csets, each with a 5-cone, are united into one cset
to balance (the index of) the positive 2-cone, which is added to it. A
fifth iset is created to contain the non-foundation (balanced) cset.
Using alg. 2, an iset chain is created, assigning four corners and
external connections to the isets. According to their index, the first
four isets are odd and the fifth is even.
Each of the first two isets is assigned a double loop, an external

tree connection, and two corners. Isets 3 and 4 are joined with an ex-
ternal joint-loop connection as an odd pair. Each of them is assigned
an external tree connection. Iset 5 is assigned two external tree
connections. Following section 4.5, a double loop is (temporarily)
reduced from the 13-cone, and its index is adjusted to -0.25. The
external joint-loop connection of the odd pair is implemented in
the problem by assigning a double-loop for each iset in the pair, and
adjusting the index of the first cone of each of these isets by 0.5.
The problem in eqs. (4) to (10) is solved to determine the internal
connections of the four foundation isets.
The defect of each of the first two isets is 2, which accounts for

two corners, and their total defect accounts for the turning number
of the polygon. The rest of the isets have defect zero. In iset 4,
the first cone receives the external joint connection and shares an
ownership of its double loop. It provides 0-2 loop connections to
the second and third cones in the iset. One of them is connected
with the tunnel loop and the other is connected with the handle
loop. The fourth cone in the iset has an internal and an external tree
connection.

6 SOLVING FOR THE POLYGON
After cutting the mesh into a disk, we need to specify the edge
lengths and angles of themetapolygon. Due to the (non-contractible)
loops, unlike in [Levi 2022], a valid angle solution does not neces-
sarily have a corresponding edge-length solution. For example, the

polygon of the 2-torus with a single cone in the inset has a valid
set of angles, but it is not possible to make all twin-edge lengths
equal for this set. Therefore, we need to solve for the angles and
edge lengths simultaneously.
Before solving for the polygon, we unite pairs of

odd isets that are: (i) corner isets; or (ii) externally
connected by a joint-loop connection. The motivation
is two-fold: (i) to conveniently obtain a single iset with
all four corners at all times; and (ii) to ensure that each
iset will have at most two polylines (a sequence of
angles) in the polygon. For example, before the union,
an external joint connection between a pair of odd
isets alternates between copies of at least two cones,
each from a different iset, which creates more than
two polylines (separate sequences) for each iset. By
uniting an odd pair, we unite their polylines as well,
making it possible to set the total defect of each one to zero.
After the union, all isets have even index. We will refer to the

isets before the union step as odd or even isets and after the union
step simply as isets.
Solving for the polygon angles and edge lengths is done via a

MILP (which is solved only once). For clarity of expositions, the
MILP is described in parts in different sections of the paper. Each
section offers additional variables and constraints to the problem
(and possibly an adjustment to its objective):

• Section 6.1 is related to polygon angles.
• Section 6.2 is related to polygon edge lengths.
• Section 8 is related to setting loop holonomies.
• Appendix B is related to intersection constraints.
• Appendix D handles the special case of a 1-torus.

For the MILP to be practical, we solve for a small subset of angles
at a time; see section 7.
Once we have the polygon, we proceed with the rest of the

pipeline as in the sphere case (section 3.1): improving the metapoly-
gon (maximizing the minimum triangulation angle), mapping the
interior, and final optimization of the initial map.

6.1 Polygon Angles
This section defines the initial MILP with variables and constraints
that determine the metapolygon angles. The constraints set and
restrict the corners to corner isets. They limit the defect of all angle
sequences between corners to achieve monotonicity. This follows
the same idea of (mostly) alternating left and right turns that was
discussed in section 3.1, which is a consequence of limiting the
defect. At this part, we are only concerned with feasibility, and the
objective is set arbitrarily.
The variables of the problem are 𝛼 ∈ A𝑛 , a vector of polygon

angles ordered CCW, with A := {90◦, 180◦, 270◦}. 𝑛 is the size of
the polygon. At the end of section 8, we suggest adding 360◦ to A
to increase the DOFs (degrees of freedom).

The problem:

min
𝛼

1

subject to
(12)
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Fig. 10. An example of a 4-torus with a positive cone, illustrating concepts. For details, see section 5.3. The input is a set of 12 cones, {2, 6×5, 2×6, 7, 8, 13}-cones,
and four tunnel loops (a). (b) the internal connections, determined by solving eqs. (4) to (10). The first row labels the isets. The second and third rows show the
index and adjusted index of each cone in the isets. Rows 4-9 show the final connection assignment for each cone. The tenth row shows the defect of each cone.
It is calculated from its adjusted index and total number of connections. The connection graph is shown (c), and connections are traced over the surface (d)
following appendix A. Each of the isets except for the fourth is circled with a dashed line. The numbers 1–5 denote iset numbers. Internal isets connections are
between cones of the same iset. The seam is cut, and the problem in section 6 is solved to determine the metapolygon angles and edge lengths (e). The iset
copies are circled with a dashed line as above. Four corners are marked with squares. Meta-edges between corners are monotone. The resulting polygon is
simple and hence trivially self-overlapping, which allows for a locally-injective mapping from any disk domain (the cut surface in our case).

𝛼 = 𝐴𝛼 (13a)

0 = 𝑏𝑐𝑜𝑟𝑖 , ∀𝑖 ∈
{
𝑖 ∈ Z𝑛

�� 𝐼𝑖 ∉ I𝑐𝑜𝑟 } (13b)
4 = ∥𝑏𝑐𝑜𝑟 ∥1 (13c)

𝛼 ≤ 90◦ + 𝜇1
(
1 − 𝑏𝑐𝑜𝑟

)
(13d)

• Equation (13a) constrains the sum of the copy angles of a cone
to be equal to the cone angle. 𝛼 ∈ R𝑚 is a given column vector
of cone angles (from the input). 𝐴 ∈ Z𝑚×𝑛2 is a binary matrix,
where the rows represent the cones, the columns represent the
domain copies, and a cell is 1 iff the copy belongs to the cone. We
have that 𝐴𝛼 sums up for each cone all the angles of its copies.

• Equation (13b) limits corner angles to corner isets. 𝑏𝑐𝑜𝑟 ∈ Z𝑛2
indicates if an angle is a corner. 𝐼𝑖 refers to the iset that contains
𝛼𝑖 . I𝑐𝑜𝑟 is the set of all corner isets.

• Equations (13c) and (13d): There are four corner angles that are
set to 90◦. Equation (13d) is formulated as a Big M constraint
(section 3.2) with 𝜇1 (= 360◦).

Sequence sum constraints:

𝑠 = 𝐵
(
180◦ − 𝛼

)
(14a)

|𝑠 | ≤ 90◦ + 𝜇1𝐵𝑏𝑐𝑜𝑟 + 𝜇1
←−
𝐵
(
1 − 𝑏𝑐𝑜𝑟

)
(14b)

|𝑠 | ≤ 𝜇1𝐵𝑏
𝑐𝑜𝑟 + 𝜇1

(←−
𝐵 + −→𝐵

) (
1 − 𝑏𝑐𝑜𝑟

)
(14c)

0 = 𝐶
(
180◦ − 𝛼

)
, (14d)

• Let 𝐿 ∈ Z𝑛×𝑛2 be a unit triangular matrix (definition 3.15). 𝐵 ∈
Z𝑛

2×𝑛
2 is defined as a column stack of binary matrices of the form

𝐵𝑖 ∈ Z𝑛×𝑛2 , each equals to some circular shift of 𝐿’s columns.
Since we do not know the corner angles yet, there is a matrix 𝐵𝑖
for each negative copy in a corner iset with angle 𝛼𝑖 (a potential
corner). 𝐵𝑖 ’s columns are a circular shift of 𝐿’s such that its first
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row has its single nonzero cell at column (𝑖 + 1) mod 𝑛, i.e. each
sequence (defined in a row of 𝐵𝑖 ) starts directly after a potential
corner angle. In eq. (14a), we have that 𝑠 = 𝐵

(
180◦ − 𝛼

)
equals

the sums of angle defects of all sequences between corners that
start directly after a corner, for each possible choice of corners.

• Equation (14b) limits the (absolute value of the) sum of a sequence
in (a row of) 𝐵 to 90◦. This is similar to [Levi 2022, eq. (2c)]. The
constraint is active (in terms of a Big M constraint) if the sequence
starts directly after a corner and does not contain corners. This
ensures monotonicity of polylines between corners.

←−
𝐵 is a binary

matrix derived from 𝐵: each of its rows has a single nonzero cell
right before the beginning of the sequence.

• Equation (14c) ensures that ameta-edge between corners is straight
(the polyline has defect zero).

−→
𝐵 is a binary matrix derived from

𝐵: each of its rows has a single nonzero cell directly after the
sequence ends.

• Equation (14d) sets the defect of a polyline of a non-corner iset
to zero. 𝐶 is a binary matrix, where each of its rows corresponds
to a sequence of angle defects of an iset polyline.

6.2 Polygon Edge Lengths
The variables and constraints in this section determine the polygon
edge lengths, and they are similar to [Levi 2022, eq. (3)]. However,
since we solve for the angles as well, the edge directions are un-
known. Therefore, we also solve for the edge directions (as auxiliary
variables), where we have constraints that tie them to the angle
variables.

Variables that are part of the problem output:
• Edge lengths 𝑙 ∈ R𝑛 .

Constraints that set edge directions from angles:

𝜇2
(
1 − 𝑏𝑎𝑛𝑔

𝑖,𝑘

)
≥
��𝑑𝑖+1 − 𝑅90𝑘◦𝑑𝑖 ��, 𝑖 ∈ Z𝑛−1, 𝑘 ∈ Z4 (15a)

∥𝑏𝑎𝑛𝑔
𝑖
∥1 = 1, 𝑖 ∈ Z𝑛−1 (15b)

𝛼𝑖 = 180◦𝑏𝑎𝑛𝑔
𝑖,0 + 90

◦𝑏𝑎𝑛𝑔
𝑖,1 + 360

◦𝑏𝑎𝑛𝑔
𝑖,2 +

270◦𝑏𝑎𝑛𝑔
𝑖,3 , 𝑖 ∈ Z𝑛−1 (15c)

𝑑0 = (0, 1)⊺ (15d)

Equation (15a) determines an edge direction 𝑑𝑖+1 ∈ R2 from a pre-
vious edge direction 𝑑𝑖 and the angle 𝛼𝑖 between them (𝜇2 = 10).
𝑅90𝑘◦ is a 90𝑘◦ 2D rotation matrix. 𝑏𝑎𝑛𝑔 ∈ Z𝑛×42 indicates which of
four possible angle values each angle has. Equation (15b) forces one
choice per angle. Equation (15c) sets an angle value for 𝛼𝑖 according
to the choice in 𝑏𝑎𝑛𝑔

𝑖
. Equation (15d) sets an arbitrary direction for

the first edge.
Constraints that involve edge vectors and coordinates:

𝑣𝑖 = 𝑙𝑖𝑑𝑖 , 𝑖 ∈ Z𝑛 (16a)
1 ≤ 𝑙𝑖 ≤ 𝑙𝑚𝑎𝑥 , 𝑖 ∈ Z𝑛 (16b)

𝑙𝑖 = 𝑙 𝑗 , ∀
(
𝑖, 𝑗

)
∈ E𝑡𝑤𝑖𝑛 (16c)

𝑣𝑖 = 𝑥𝑖+1 − 𝑥𝑖 , 𝑖 ∈ Z𝑛 (16d)

• Equation (16a) sets the 𝑖th edge vector 𝑣𝑖 ∈ R2 from the direction
𝑑𝑖 and an edge length 𝑙𝑖 ∈ R. This is a bilinear constraint; see an
equivalent formulation in appendix C.

• Equation (16b) bounds the edge lengths, where 𝑙𝑚𝑎𝑥 ∈ R is a
constant (we used 1000).

• Equation (16c): twin edges have the same length. E𝑡𝑤𝑖𝑛 ⊂ Z𝑛 ×
Z𝑛, |E𝑡𝑤𝑖𝑛 | =

𝑛

2
, contains pairs of corresponding twin-edge

indices.
• Equation (16d) sets the 𝑈𝑉 coordinates 𝑥 ∈ R2×𝑛 from edge

vectors (and the index 𝑖 is cyclic).

Proposition 6.1. For a mesh of genus 𝑔 > 1, there is a solution
to the problem in eqs. (12) to (16) with the additional constraints in
appendices B.2 and B.3.

Corollary 6.2. For a mesh of genus 𝑔 > 1, there exists a quad
mesh (extracted from the seamless mapping after mapping the interior
into the polygon) of corresponding singularities for any set of cones
with total index 𝜒 , and each has index < 1.

7 POLYGON ANGLE SUSPENSION
To make the MILP in section 6 practical, we solve for a small set of
variables at a time. We leverage the dummy edge idea in the proof
of proposition 6.1 to solve for the angles of one iset at a time while
keeping the others suspended.

We begin by solving for the angles of the corner iset. This leaves
two polylines that consists of a sequence of angles of isets with
defect zero. We suspend these angles by setting them to arbitrary
values (and temporarily disable relevant constraints). In each se-
quence of suspended angles, we set the first two (if there is more
than one angle) to 90◦ and 270◦, and the rest of the angles are set to
180◦. The first two angles add thickness to the suspended polyline,
which allows for a bounding box of arbitrary size (i.e. it provides
space and flexibility when the real angles are set).

After solving for the corner angles, we solve for the angles of each
balanced iset (defect zero) at the time, except the last one, while:
• Keeping the direction of edges incident to angles of the corner

iset fixed.
• Keeping the angles of the other balanced isets suspended.
When solving for the last iset with the non-foundation csets

(and no loops), we enable all the isets (set the real angles). Since
the foundation isets are already determined, it is possible in this
final iteration to solve for angles and lengths separately, as done
in [Levi 2022]. Meaning, first solve for the foundation polygon,
ensuring consistency of angles and lengths by solving for them
simultaneously, and then solve for the non-foundation csets in two
steps (angles and then lengths). But in practice the difference in
performance was insignificant.
This scheme effectively limits the mixed-integer problem size

to about the size of a problem that solves for the angles and edge
lengths of a single foundation iset.

8 SETTING LOOP HOLONOMIES
Given a field, the holonomy of a dual non-contractible loop that
starts on one side of a seam edge and ends on its other (without
crossing the seam for simplicity) can be calculated using parallel
transport (based on the cross field). The holonomy can be repre-
sented as (field) index, which is equal to the index (or matching
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divided by four) of the seam edge up to an integer. Over the (do-
main) polygon, the same holonomy of the loop can be calculated
from the defect of the edge sequence between one twin of the seam
edge to the other. Over the surface, this can be viewed as a dual
loop the starts at the seam edge from one side (the first twin) and
goes along the seam until reaching the other side of the seam edge
(the second twin), and it is homotopic to the loop described above.
The relation between the defect 𝑘 of a polygon edge sequence and
the index of the corresponding dual loop ℓ over the surface is

𝑘 = 4
(
1.5 − idx (ℓ)

)
.

We use that to measure loop holonomies in terms of defect.
Let 𝐵ℎ ∈ Z2𝑔×𝑛 be a matrix indicating angle sequences of the

loops and Δℎ ∈ Z2𝑔 be the given loop holonomies. To enforce the
holonomies, we can add the constraint

Δℎ = 𝐵ℎΔ ,

where Δ := 2 − 𝛼

90◦
, and 𝛼 is the vector of polygon angles (sec-

tion 6.1).
However, enforcing a hard constraint is impractical since:

(1) Our constraints, such as monotonicity, may limit the space of
possible holonomies.

(2) If the input holonomies were extracted from a field that was
generated arbitrarily, e.g. to promote smoothness [Bommes,
Zimmer, et al. 2009], then they may not be feasible. A field is
set by a choice of edge matchings (period jumps). Indices of
resulting cones will always sum up to 𝜒 , and the only required
restriction is that cone indices are < 1. Then, except for the
special case of a {3, 5}-cone pair on a torus, every such cone set
is feasible. Loop holonomies are bounded. Consider the sequence
of angles in the polygon between twin edges that a loop crosses.
The loop holonomy will be bounded by the angles that can be
set in the sequence, which depend on cone indices. Even if this
bound is satisfied, it is still an open problem to determine if they
are feasible (a locally injective mapping with these holonomies
exists).

Therefore, we decided to use a soft constraint instead, where we
add to the objective in eq. (12):

𝜆ℎ

Δℎ − 𝐵ℎΔ2
2
, (17)

which turns the problem into a mixed-integer quadratic program
(MIQP). 𝜆ℎ (we used 103) is a weighing constant. All the 𝜆 weighing
constants are chosen such that there is no competition between
the terms in the objective but a clear priority. An alternative im-
plementation is to use a hierarchy of multiple objectives, which is
supported, e.g., by [Gurobi 2018]. Thus, if the holonomy case can be
handled by the algorithm, then the holonomies would be satisfied
exactly.
To allow more degrees of freedom (DOFs), we add 360◦ to A

(section 6.1). While this causes some edges to overlap, the polygon
is still (weakly) simple (up to perturbation).

8.1 Monotonicity Constraint Deactivation
To further increase the DOFs, we allow a restricted amount of mono-
tonicity violation. This involves modifying the constraint in eq. (14b)

(adding a term) and replacing it with:

|𝑠 | ≤ 90◦ + 𝜇1𝐵𝑏𝑐𝑜𝑟 + 𝜇1
←−
𝐵
(
1 − 𝑏𝑐𝑜𝑟

)
+ 𝜇1𝑏𝑚𝑜𝑛 (18a)𝑏𝑚𝑜𝑛


1 ≤ 𝑛𝑚𝑜𝑛 (18b)

along with adding a term to the objective (eq. (12)):

𝜆𝑚𝑜𝑛

𝑏𝑚𝑜𝑛

1 . (19)

𝑏𝑚𝑜𝑛 ∈ Z𝑛2

2 indicates if a sequence constraint was (forcefully) deac-
tivated. 𝜆𝑚𝑜𝑛 (we used 1) is a weighing constant, and 𝑛𝑚𝑜𝑛 is the
maximum number of allowed constraint deactivations.

To keep the violation local, we limit the length of an edge after a
monotonicity violation:���𝑙−→

𝑖 +1 − 𝑙𝑚𝑜𝑛

��� ≤ 𝜇3
(
1 − 𝑏𝑚𝑜𝑛 ) , (20)

where 𝑙𝑚𝑜𝑛 ∈ R (=2) is a bound on the edge length. −→𝑖 ∈ N𝑛2

0 is the
index in the polygon of the last element in each sequence. 𝜇3 is set
to 𝑙𝑚𝑎𝑥 (=1000). Since the violation is limited, it will occur in the
last angle of a sequence: if 𝛼𝑖 causes a violation, which is remedied
in 𝛼𝑖+1, then only the monotonicity of a sequence that ends with
𝛼𝑖 will be violated (assuming it is the only violation). There is only
one such sequence that ends with 𝛼𝑖 that can be active (depending
on the choice of the preceding corner, which determines the start
of the sequence).

In our experiments we tried with and without the monotonicity
constraint deactivation. The price of deactivating the constraints
is an increase in the number of intersection constraints, which
affects the solver run time. In conjunction with the angle suspension
scheme (section 7), we used 𝑛𝑚𝑜𝑛 = 0 when solving for the first
(corner) and last (non-foundation) isets, and 𝑛𝑚𝑜𝑛 = 3 for all the rest.
This improved some of the solutions without significantly increasing
the number of intersection constraints; see table 1.

9 EVALUATION
We used [Dey et al. 2013] to extract 𝑔 disjoint loops. Their algorithm
uses a random direction. For most models, the tunnels from a single
iteration sufficed. However, because their implementation is not
foolproof, some models required several runs (starting from a dif-
ferent random direction) and the selection of a blend of tunnels and
handles.

To solve the (mixed-)integer problems, we used [Gurobi 2018].

Run time. The experiments were conducted on a laptop. Selecting
the foundation set involves solving eq. (11), which takes a fraction of
a second. Determining the internal connections of an iset involves
the limited size problem in eq. (4), which takes a fraction of a second
to solve. Tracing the seam over the surface is done as per [Levi 2022],
and it takes between two seconds for a small model (helmet) up to
85 seconds for a larger one (bozbezbozzel). Solving for the polygon
was done using the angle suspension scheme (section 7) that solves
iteratively for each iset (angles) at a time. Each iteration solves the
problem in eq. (12) which, for genus ≥ 2, typically took less than
a second for a small polygon (helmet) up to a minute for a larger
polygon with a handful of intersection constraints (thai_statue). The
final optimization was conducted similar to [Levi 2022], using an
external solver [Shtengel et al. 2017], which can take up to several
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Fig. 11. Models from table 1. From left to right: the seam graph, polygon, final mapping, and [Myles, Pietroni, et al. 2014].
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# model faces g cone range faces energy added seam poly opti diff

1 block  4K 3 46 3–5  13K 0.04 2  5K  24K  6K 0.35 0.26 6s 281s 57s 3

2 botijo  82K 5 70 3–5  117K 0.09  86K  180K  85K 0.79 0.44 16s 209s 0.3h 3

3 bozbezbozzel  100K 5 305 2–12  181K 0.13  119K  716K  128K 0.18 0.16 85s 35s 4.3h 5

4 camel  69K 1 121 2–7  111K ∞  75K  208K  72K 0.3 0.3 28s 76s 0.3h 2

5 carter  100K 7 64 3–5  150K 0.19  103K  194K  102K 0.63 0.2 24s 76s 0.5h 1

6 casting_refined  37K 9 119 3–6  67K 0.04  39K  101K  42K 0.33 0.19 19s 562s 11s 3

7 chair  100K 7 98 3–7  162K ∞  110K  271K  104K 1.12 1.12 27s 54s 0.7h 4

8 dancer2  18K 1 53 2–9  42K 0.47 4  20K  57K  20K 0.78 0.78 5s 5s 126s 2

9 dancing_children  100K 8 212 2–7  165K 0.09  120K  464K  112K 0.67 0.41 52s 192s 1.7h 6

10 dragonstand  104K 1 233 3–7  166K ∞  111K  442K  111K 0.46 0.44 43s 175s 1.4h 1

11 elephant  50K 3 118 3–7  83K 0.05  51K  114K  52K 0.23 0.18 14s 24s 456s 3

12 fertility_tri  28K 4 60 3–5  45K 0.04  30K  94K  31K 0.04 0.04 9s 72s 388s 0

13 genus3  13K 3 22 3–5  21K 0.07  15K  32K  14K 0.19 0.07 6s 78s 83s 0

14 greek_sculpture  50K 4 112 1–8  86K ∞  55K  150K  54K 0.23 0.14 16s 86s 674s 2

15 helmet  1K 3 9 3–22  5K ∞  1K  2K  1K 0.65 0.66 2s 15s 3s 2

16 heptoroid  100K 22 140 4–8  168K 0.15  166K  834K  125K 1.76 1.33 62s 35s 325s 10

17 holes3  12K 3 24 3–5  21K 0.05  12K  23K  12K 0.05 0.05 6s 113s 29s 0

18 master_cylinder  100K 3 32 3–5  124K 0.09  101K  170K  101K 0.12 0.12 11s 159s 659s 1

19 neptune0  105K 3 212 3–8  167K 0.08  185K  1.5M  135K 1.67 1.69 62s 49s 10.6h 4

20 oil_pump  100K 4 212 2–6  168K 0.07  109K  407K  110K 0.21 0.15 43s 164s 1.6h 3

21 pegaso  31K 6 131 2–14  63K 0.10  52K  305K  45K 4.1 3.45 15s 106s 0.8h 8

22 rolling_stage  100K 7 52 3–5  138K 0.03  101K  171K  102K 0.29 0.33 19s 178s 0.4h 4

23 seahorse2  100K 8 216 3–20  171K ∞  131K  399K  113K 0.6 0.53 32s 60s 3.0h 12

24 thai_statue  80K 3 366 3–7  160K 0.06  94K  710K  105K 0.15 0.1 39s 155s 6.4h 4

25 twirl  10K 1 16 1–6  17K 0.19 4  11K  16K  11K 0.77 0.77 4s 1s 30s 2

energy

input

faces

Myles14 ours

Table 1. Statistics. “g”: genus. “cone”: number of cones. “range”: range of cone quad degree. “energy”: the symmetric Dirichlet energy in eq. (21) after
optimization.∞ indicates a value > 105, which means that the optimizer could not make progress due to numerical issues caused by nearly collapsed triangles.
“added”: the number of added cones compared to the input. In our results, the two columns under “energy” are without and with restricted violation of
monotonicity constraints (section 8.1). The three columns under “faces” describe the size of the mesh after tracing the seam, mapping the interior, and
simplification. “seam” and “poly”: time (in seconds) to trace the seam and solve for the polygon. “opti”: the time (in seconds or hours) it took for the external
solver [Shtengel et al. 2017] to optimize the initial mapping. “diff”: the number of loops whose holonomies are different than the input in the result with the
restricted violation.

Fig. 12. A stress test on a model of genus 100 with 792 cones.

hours, depending on the model size.

[Zhou et al. 2020]. The method can handle any genus and cone
degree ≥ 2, but their experimentswere limited to genus ≥ 3.We used
the same 20 models that were used in that paper plus five additional
models to extend the genus and cone ranges; see table 1 and figs. 1,
11 and 17 to 19. The models are from [Myles, Pietroni, et al. 2014]’s
dataset, where the fields were generated using [Bommes, Zimmer,
et al. 2009], followed by a post-processing step that joins nearby
cones (that, e.g., enforce a higher quad-grid resolution otherwise).
Note from table 1 how 1-cones were naturally formed in the twirl
and greek_sculpture by this common process.
The results in [Zhou et al. 2020] are provided for the polygon

construction only (without testing it with the rest of the pipeline:
interior mapping and optimization). Thus, the sum of the “#F init”
and “#F pad” columns and the “Time” column in [Zhou et al. 2020,
table 1] can be compared to our first column of “faces” and the sum
of “seam” and “poly” in table 1. For example, for the thai_statue,
their algorithm run time was 7403s and produced an auxiliary quad
mesh with 6280K quad faces that a polygon can be extracted from
[Levi 2022, appendix H]. This polygon is full, and its shortcomings
are discussed in [Levi 2022, appendix G.3]. Moreover, the polygon
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sets random loop holonomies (that cannot be controlled). In com-
parison, our polygon construction took 194sec. It is a metapolygon
whose size depends on the number of cones (and their degree). Thus,
it allows necessary optimization (increasing the minimal angle in
the coarse metapolygon triangulation) [Levi 2022, appendix H] that
increases the quality of the interior mapping [Levi 2022, appendix
E] that alleviates the issue of nearly collapsed triangles. Our method
does not use an auxiliary mesh, and tracing the seam resulted in a
mesh with 94K triangles. Another example is the heptoroid in figure
12 in [Zhou et al. 2020], which illustrates their polygon complexity.
Compare it with our simple polygon in fig. 11.

[Myles, Pietroni, et al. 2014]. The method traces the cross field over
the surface, and it is likely to preserve cones and loop holonomies
in the layout. However, this is not guaranteed. For example, their
mapping results of the block, dancer2, and twirl contain additional
{3, 5}-cone pairs. This is not only a violation of the theoretical prob-
lem at hand, but it also has practical consequences. Using chains of
{3, 5}-cone pairs, [Myles and Zorin 2013] showed that the mapping
distortion can be made arbitrarily low. However, these singularities
cannot be controlled and may form in unintended places, where
the close proximity between cones in a pair would enforce higher
quad mesh resolution. Another issue is that the generated mapping
contains nearly collapsed triangles. These cause numerical issues
that the state-of-the-art optimizer [Shtengel et al. 2017] could not
handle, and it ended prematurely; see table 1.

Themapping quality was measured using the symmetric Dirichlet
energy [Rabinovich et al. 2017; Smith and Schaefer 2015]:

𝜎21 +
1
𝜎21
+ 𝜎22 +

1
𝜎22
− 4 , (21)

where 𝜎1 and 𝜎2 are the singular values of the a triangle mapping.
Whenever the optimizer succeeded when using a [Myles, Pietroni,
et al. 2014]’s mapping as initialization, it converged to (what is
likely) the global minimum. This provides a target to compare our
result with. In our result, in only three of the models all the loop
holonomies are set exactly like the input. Accordingly, for these
models the energy is similar to [Myles, Pietroni, et al. 2014], and it
is higher for the rest of the models, where some of the holonomies
are suboptimal. The model that is affected by this the most and has
the highest distortion is the pegaso.

10 LIMITATIONS AND FUTURE WORK
We extended the robust method of [Levi 2022] to a higher genus.
The key for robustness is the construction of a small metapolygon,
which can be optimized before the interior mapping.

We addressed the problem of prescribing loop holonomies, which
can significantly affect mapping distortion. Our solution, however,
is limited due to our monotonicity constraints that keep our polygon
simple. One direction to improve this limitation is to take advantage
of the partitioning of the polygon into polylines (section 7). One
may consider polylines that self-intersect (locally), but still have the
same total defect, which would increase the DOFs.
The proof of proposition 6.1 shows feasibility for the problem

with a core set of constraints. These do not include the bounding box
constraints in appendix B.4, which reduce the number of potential

intersections. Also, the proof does not include the added DOFs in
appendix B.1 nor the acceleration strategy in section 7.
For the 1-torus, we did not prove feasibility for the case of a

field that has a 1-cone and no 2-cones (appendix D.5). Thus, while
our solution worked in all our experiments, we did not provide
guarantees that it is always successful. We note that previous work
does not handle 1-cones at all.

All other limitations of the rest of the pipeline that were noted in
[Levi 2022, section 11] still stand:
• The method relies on interior mapping. Current interior mapping

methods produce a large mesh with excess refinement, which
hinders performance of optimization methods.

• Sharp features, which are crucial in some application (e.g. CAD),
were not addressed. A possible direction is noticing that our poly-
gon edges are axis-aligned. If the seam passes through features
curves, then alignment is guaranteed.

• The method now handles a surface of any genus but addresses
only closed surfaces. In a surface with boundary, the geodesic
curvature of the boundary can be prescribed. One direction to
consider is using a double cover, where a surface is duplicated
and glued at the boundary. This creates a closed surface with
extra cones whose index determines the geodesic curvature of
the boundary. The closed surface can be parameterized using the
current method and cut in half.

We leave these directions to explore in future work.
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A PAIRING AND TRACING CONNECTIONS
Connections are made by tracing the seam over the mesh, following
the refinement rules in [Levi 2022, appendix C]. Tracing a connection
is done by finding a (shortest) path over the mesh edges while
avoiding intersection with other parts of the seam.
When connections are assigned, only connection ends are as-

signed to cones without explicitly pairing them (e.g. four cones
were assigned a tree connection each, but we have not specified yet

which pairs of cones the two tree connection paths connect), which
we specify in this section. Given the assigned internal connections,
we connect the csets in an iset following the five steps below. In the
steps, we connect two csets only if they belong to different (seam)
graph components.

(1) Connect joint loops. Create a list of csets with joint loop con-
nections. Sort the list first by the number of tree connections,
and then by the number of joint loop connections, using a stable
sort. Iterate the list, connecting a cset from its front with a cset
from its back. Each pair of connected csets is removed from the
list.

(2) Connect double loops.
(3) Apply 0-2 loop connections. Create two lists. The first, a list

of providers, which is sorted by the number of provided 0-2
connections. The second, a list of receivers, which is sorted first
by the number of tree connections and then by the number of
provided 0-2 connections, using a stable sort. Iterate over the list
of providers in a reverse order. If a provider has a tree connection,
then it is matched with a receiver from the beginning of the
receivers list and otherwise from its end. A connected pair of
provider and receiver are removed from the corresponding lists.
If the provider provides two connections, then it is inserted back
to the beginning of the provider list.

(4) Connect tree connections. Create a spanning tree between the
cset graph components. Start from a seed cset with a tree con-
nection. Connect csets which are not in the tree, prioritizing
csets with more than one tree connection.

(5) Connect reduced double loops.

After connecting each iset internally, we connect the isets to each
other in a chain. Since the joint-loop connections were already made
when constructing the iset chain, only 0-2 loop and tree connections
need to be made, and the order of the isets in the chain can be
arbitrary.

A.1 Seam Edge Order Around a Cone
When connecting a negative-dominant cset, we are mindful of the
seam edge order around its negative cone 𝑣 . This is used in proving
proposition 6.1. Joint-loop, 0-2 loop (receiver), and tree connections
are performed such that double-loop connections and internal tree
connections to positive cones are on one side of the seam. That
is, after cutting the seam, the copies of 𝑣 are divided between two
polylines. One polyline will have a single copy due to two external
edges going from 𝑣 , and the other polyline will have the remainder
of the copies. For example, if 𝑣 is externally connected via two tree
connections, it will then have these two edges one after the other,
when considering the order of seam edges around 𝑣 . Similarly, for a
0-2 loop-receiver connection, the two edges are one after the other
when considering the order of seam edges around the incident (re-
ceiver) vertex. It is also possible to ensure the correct order in a joint
connection by keeping the external connection to the right of the
meta-half-edge that the two loops share.

Levi [2022] concluded that maintaining a specific seam-edge order
around a vertex is not necessary for a non-foundation balanced cset
𝑐 (which is added to an existing foundation polygon). Nevertheless,

http://www.gurobi.com
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we maintain an edge order as described above for the 1-torus case.
There could be up to three negative cones in a balanced cset, where
a cset with more than one negative cone is termed in [Levi 2022,
section 6] a united cset. For genus > 1, the external connections to
𝑐 are tree connections. For genus 1, the external connections to 𝑐
are via a generalization of the 0-2 connection (appendix D). In both
cases, the requirement is to keep all the positive cones to one side
of the seam.

B INTERSECTION CONSTRAINTS
The monotonicity constraints do not guarantee intersection-free
polygon but significantly reduce the number of potential intersec-
tions to a handful (if any), which need to be resolved. [Levi 2022,
appendix K] offers intersection(-free) constraints that are mainly
necessary when solving for the foundation polygon, which we use in
a similar way. In this section, we adjust and extend these constraints.
We consider the angle suspension scheme (section 7). If there

are intersections, most of them occur in the first iteration when
solving for the corner iset angles. In subsequent iterations, we solve
for the angles of two monotone polylines of a balanced iset (defect
zero), which usually do not add intersections, while keeping the
edge directions of the corner iset fixed. Similar to [Levi 2022], we
encourage longer edges incident to the four corners (appendix B.3),
so polylines of a balanced set appear as small features that are
unlikely to globally intersect (they cannot intersect locally due to
the monotonicity constraints).

Except for the final iset of the non-foundation csets, an iset has a
limited size and hence a limited number of angle variables. Except
for the first two turns, the rest of a suspended polyline is straight.
A straight polyline is efficiently treated in [Levi 2022, appendix K]
as a single segment. The result is that in every iteration (except the
final one), the polygon has small number of turns, which directly
affects the number of potential intersection constraints. Moreover,
the intersection constraint set is emptied every new iset iteration
(in the angle suspension algorithm).

B.1 Allowing 360◦ Angles
To allow 360◦ angles (section 8), we need to allow overlapping edges
when checking for segment intersection. Given a sequence of angles
that are all 180◦ except for onewhich is 360◦, we ignore intersections
between all edges incident to the angle sequence.

B.2 Specific Edge Directions
Each time intersections are detected in the result, we solve eq. (12)
again (for the same angles) with additional intersection constraints.
Since we solve simultaneously for angles and lengths, unlike [Levi
2022], edge directions may change when solving again. Therefore,
an intersection constraint between two edges needs to be specific
to given edge directions.

We use the notations, variables, and definitions in [Levi 2022, ap-
pendix K]. Given two intersecting edges, the matrix 𝐴 ∈ R2×2

consists of the edge directions. Similarly, we define the matrix
𝐴 :=

[
𝑑𝑖 −𝑑 𝑗

]
, where 𝑑𝑖 , 𝑑 𝑗 ∈ R2 are the (unknown) directions

of these edges in the polygon that we are solving for in eq. (15a).
We add a condition (using the Big M method with 𝜇5 = 10) to the

last constraint in [Levi 2022, appendix K] (𝑏1 + 𝑏2 + 𝑏3 + 𝑏4 ≤ 3)
that depends upon the two pairs of vectors being equal (eq. (22a)),
accompanied by additional constraints:

∥𝑏𝑖 ∥1 ≤ 3 + 𝜇5
(
1 − 𝑏𝑠𝑎𝑚𝑒 ) (22a)

𝐷 = 𝐴 −𝐴 (22b)

𝜖1 ≤ vec𝐷 + 𝜇5
(
𝑏𝑐𝑒𝑙𝑙 + 𝑏𝑛𝑒𝑔

)
(22c)

𝜖1 ≤ − vec𝐷 + 𝜇5
(
𝑏𝑐𝑒𝑙𝑙 + 1 − 𝑏𝑛𝑒𝑔

)
(22d)

|vec𝐷 | ≤ 𝜖1 + 𝜇5
(
1 − 𝑏𝑐𝑒𝑙𝑙

)
(22e)

4𝑏𝑠𝑎𝑚𝑒 ≤
𝑏𝑐𝑒𝑙𝑙 

1
≤ 3 + 𝑏𝑠𝑎𝑚𝑒 (22f)

where 𝐷 ∈ R2×2 is the difference between the two matrices. vec (·)
gives the column stack of a matrix. 𝑏𝑐𝑒𝑙𝑙 ∈ Z4

2 matches the dimen-
sion of vec𝐴, and 𝑏𝑐𝑒𝑙𝑙

𝑖
indicates if the 𝑖th cell of vec𝐴 and vec𝐴

is equal. 𝑏𝑠𝑎𝑚𝑒 ∈ Z2 indicates if all four cells are equal (𝐴 = 𝐴).
𝜖1 ∈ R (=0.1) is a threshold for two cell values being equal.𝑏𝑛𝑒𝑔 ∈ Z4

2
indicates the sign of each cell of vec𝐷 .

B.3 Longer Corner Edges
We add constraints to encourage longer edges incident to the four
corners. Define𝑏𝑐𝑜𝑟𝐸 ∈ Z

𝑛
2
2 that indicates for each pair of twin edges

in E𝑡𝑤𝑖𝑛 if (at least) one of the twins is incident to a corner. For
the 𝑘th pair

(
𝑖, 𝑗

)
∈ E𝑡𝑤𝑖𝑛 , the constraints that define the indicator

𝑏𝑐𝑜𝑟𝐸
𝑘

are:

𝑏𝑐𝑜𝑟𝐸
𝑘

≤ 𝑏𝑐𝑜𝑟𝑖 + 𝑏𝑐𝑜𝑟𝑖+1 + 𝑏
𝑐𝑜𝑟
𝑗 + 𝑏𝑐𝑜𝑟𝑗+1 (23a)

𝑏𝑐𝑜𝑟𝐸
𝑘

≥ 𝑏𝑐𝑜𝑟𝑖 (23b)

𝑏𝑐𝑜𝑟𝐸
𝑘

≥ 𝑏𝑐𝑜𝑟𝑖+1 (23c)

𝑏𝑐𝑜𝑟𝐸
𝑘

≥ 𝑏𝑐𝑜𝑟𝑗 (23d)

𝑏𝑐𝑜𝑟𝐸
𝑘

≥ 𝑏𝑐𝑜𝑟𝑗+1 (23e)

We add soft constraints to encourage longer corner edges (only the
length of one twin needs to be set due to eq. (16c))���𝑙𝑖 − 𝑙𝑙𝑜𝑛𝑔 ��� ≤ 𝑡 + 𝜇3

(
1 − 𝑏𝑐𝑜𝑟𝑖

)
, ∀

(
𝑖, 𝑗

)
∈ E𝑡𝑤𝑖𝑛 (24a)

|𝑙𝑖 − 1| ≤ 𝑡 + 𝜇3𝑏𝑐𝑜𝑟𝑖 , ∀
(
𝑖, 𝑗

)
∈ E𝑡𝑤𝑖𝑛 (24b)

along with a term to the objective (eq. (12)):

𝜆𝑡 𝑡 , (25)

where 𝜆𝑡 (=10−3) is a weighing constant. 𝑙𝑙𝑜𝑛𝑔 (=
𝑛

4
, clamped to

[10, 100]) is a constant that determines the preferred length of long
edges.
These soft constraints are enabled in the first iteration when

solving for the corner iset (section 7), and else we encourage the
edge lengths to remain similar to the lengths 𝑙0 from the previous
iteration (see [Levi 2022, eq. (3a)]):���𝑙 − 𝑙0��� ≤ 𝑡 . (26)
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B.4 Bounding Box Constraints
We take advantage of the (coarse) rectangular shape of the metapoly-
gon (section 4.3) and add special intersection constraints to prevent
two opposing meta-edges in the rectangle from intersecting each
other, which reduce the number of potential intersections (contribut-
ing to a faster solution). The constraints are added after solving the
first iset angles and determining the corners.
Let 𝜎𝑟𝑖𝑔ℎ𝑡 be the set of vertex indices on the right meta-edge of

the rectangle: from the bottom-right corner to the top-right corner
(included). Similarly, define 𝜎 · for the other three rectangle meta-
edges. Also, define the complement sets 𝜎 · := Z𝑛 \ 𝜎 · . Determine
the bounds on the relevant coordinate (𝑈 or 𝑉 ) of each edge, and
set opposing edges 𝜖2 (=10) apart:

𝑚𝑟𝑖𝑔ℎ𝑡 ≤ 𝑥𝜎𝑟𝑖𝑔ℎ𝑡 ,𝑈 (27a)
𝑚𝑡𝑜𝑝 ≤ 𝑥𝜎𝑡𝑜𝑝 ,𝑉 (27b)
𝑚𝑙𝑒 𝑓 𝑡 ≤ 𝑥𝜎𝑙𝑒 𝑓 𝑡 ,𝑈 (27c)

𝑚𝑏𝑜𝑡𝑡𝑜𝑚 ≤ 𝑥𝜎𝑏𝑜𝑡𝑡𝑜𝑚,𝑉 (27d)
𝑚𝑟𝑖𝑔ℎ𝑡 ≥ 𝜖2 +𝑚𝑙𝑒 𝑓 𝑡 (27e)
𝑚𝑡𝑜𝑝 ≥ 𝜖2 +𝑚𝑏𝑜𝑡𝑡𝑜𝑚 (27f)

Set a pair of opposing rectangle edges apart from the rest of the
polygon:

𝑥�̄�𝑟𝑖𝑔ℎ𝑡 ,𝑈 ≤ 𝑚𝑟𝑖𝑔ℎ𝑡 − 𝜖2 + 𝜇6
(
1 − 𝑏ℎ𝑜𝑟𝑖𝑧

)
(28a)

𝑚𝑙𝑒 𝑓 𝑡 ≤ 𝑥�̄�𝑙𝑒 𝑓 𝑡 ,𝑈 − 𝜖2 + 𝜇6
(
1 − 𝑏ℎ𝑜𝑟𝑖𝑧

)
(28b)

𝑥�̄�𝑡𝑜𝑝 ,𝑉 ≤ 𝑚𝑡𝑜𝑝 − 𝜖2 + 𝜇6𝑏ℎ𝑜𝑟𝑖𝑧 (28c)
𝑚𝑏𝑜𝑡𝑡𝑜𝑚 ≤ 𝑥�̄�𝑏𝑜𝑡𝑡𝑜𝑚,𝑉 − 𝜖2 + 𝜇6𝑏ℎ𝑜𝑟𝑖𝑧 (28d)

where 𝑏ℎ𝑜𝑟𝑖𝑧 ∈ Z2 chooses between the horizontal and vertical
pairs. We set 𝜇6 to 104.
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C BILINEAR CONSTRAINTS
For the 𝑖th edge, the bilinear constraint in Equation (16a) is equiva-
lently formulated as:

1 ≤ 𝑑𝑖,𝑈 +
(
1 − 𝑏𝑑𝑖𝑟𝑖,0

)
(29a)

𝑑𝑖,𝑈 ≤ −1 +
(
1 − 𝑏𝑑𝑖𝑟𝑖,1

)
(29b)

1 ≤ 𝑑𝑖,𝑉 +
(
1 − 𝑏𝑑𝑖𝑟𝑖,2

)
(29c)

𝑑𝑖,𝑉 ≤ −1 +
(
1 − 𝑏𝑑𝑖𝑟𝑖,3

)
(29d)

∥𝑏𝑑𝑖𝑟𝑖 ∥1 = 1 (29e)��𝑣𝑖,𝑈 �� ≤ 𝜇3
(
𝑏𝑑𝑖𝑟𝑖,0 + 𝑏

𝑑𝑖𝑟
𝑖,1

)
(29f)

𝑙𝑖 ≤ 𝑣𝑖,𝑈 + 𝜇3
(
1 − 𝑏𝑑𝑖𝑟𝑖,0

)
(29g)

𝑣𝑖,𝑈 ≤ −𝑙𝑖 + 𝜇3
(
1 − 𝑏𝑑𝑖𝑟𝑖,1

)
(29h)��𝑣𝑖,𝑉 �� ≤ 𝜇3

(
𝑏𝑑𝑖𝑟𝑖,2 + 𝑏

𝑑𝑖𝑟
𝑖,3

)
(29i)

𝑙𝑖 ≤ 𝑣𝑖,𝑉 + 𝜇3
(
1 − 𝑏𝑑𝑖𝑟𝑖,2

)
(29j)

𝑣𝑖,𝑉 ≤ −𝑙𝑖 + 𝜇3
(
1 − 𝑏𝑑𝑖𝑟𝑖,3

)
(29k)

|𝑣𝑖 | ≤ (𝑙𝑖 , 𝑙𝑖 )⊺ (29l)

In eq. (15), 𝑑𝑖 =

[
𝑑𝑖,𝑈
𝑑𝑖,𝑉

]
is set to one out of four directions. Equa-

tions (29a) to (29e) set the indicator 𝑏𝑑𝑖𝑟
𝑖
∈ Z4

2, which decides one
state out of four according to 𝑑𝑖 . Equations (29f) to (29l) set the

vector of the 𝑖th edge, 𝑣𝑖 =

[
𝑣𝑖,𝑈
𝑣𝑖,𝑉

]
∈ R2. Its direction is determined

by 𝑏𝑑𝑖𝑟
𝑖

, and its length is 𝑙𝑖 . 𝜇3 is set to 𝑙𝑚𝑎𝑥 (=1000).

D 1-TORUS
In this section, we treat the special case of a 1-torus. We start with
the seam construction:
• Pick arbitrary regular vertices𝑢 and 𝑣 to comprise the foundation

set.
• Connect the single double loop to𝑢. Mark its four copies as corner

angles.
• Connect 𝑢 to 𝑣 via a 0-2 connection, using the tunnel loop. We

denote the angles of the two copies of 𝑣 as 𝛼𝑣𝑎 and 𝛼𝑣𝑏 .
• Connect 𝑢 to each balanced cset via a 0-2 connection, using the

handle loop. In case the cset has more than one negative cone (a
united cset—see [Levi 2022, section 6]), then the 0-2 connection is
generalized to pass through the cset’s negative chain (connecting
to both of its ends).

Author’s address: Zohar Levi, Victoria University of Wellington, New Zealand.

Fig. 13. Two gun-shape polygons.
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Fig. 14. An L-shape polygon.

Fig. 15. A stair-shape polygon.

Maintaining the seam edge order around a vertex (appendix A.1),
the four meta-edges of the polygon between the corner angles in a
CCW order are:
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(1) A polyline with 𝛼𝑣𝑎 .
(2) A short polyline that consists of a single copy of each negative

cone. Let 𝛼𝑠 ∈ R𝑘 be the (CCW) sequence of the polyline angles.
(3) A polyline with 𝛼𝑣𝑏 .
(4) A long polyline that consists of all the rest of the negative copies

and all the positive copies. Let 𝛼𝑙 ∈ R𝑚 be the (CCW) sequence
of the polyline angles.

Depending on the field, instead of a (coarse) rectangle (section 4.3),
we construct a polygon in one out of three possible (coarse) shapes:

(i) If the field contains a 2-cone, then we construct a gun-shape;
see fig. 13.

(ii) Else, if the field contains a united cset, then we construct a
stair-shape; see fig. 15.

(iii) Else, we construct an L-shape; see fig. 14.

When solving for the polygon, we add a specific set of constraints
(to the problem in section 6) for each shape.

Let 𝐵𝑙 ∈ Z𝑚×𝑚2 and 𝐵𝑠 ∈ Z𝑘×𝑘2 be unit triangular matrices
(definition 3.15). Define the polyline defects:

Δ𝑙 := 2 − 𝛼𝑙

90◦

Δ𝑠 := 2 − 𝛼𝑠

90◦

Define sequence defects in each polyline:

𝛿𝑙 := 𝐵𝑙Δ𝑙

𝛿𝑠 := 𝐵𝑠Δ𝑠

D.1 Gun-Shape Constraints

0 ≤ 𝛿𝑙 (30a)

1 = 𝛿𝑙
𝛽

(30b)

90◦ = 𝛼𝑣𝑎 (30c)
−1 = 𝛿𝑠

𝑘
(30d)

0 ≥ 𝛿𝑠 (30e)

where

• Equation (30a) restricts𝛼𝑙 from having a right turnwith respect to
the initial direction (of the sequence): restricts all sequences that
start at 𝛼𝑙0 from turning right, i.e. the total defect of a sequence is
≥ 0.

• Equation (30b) forces the sequence 𝛼𝑙0, . . . , 𝛼
𝑙
𝛽
to perform a big

left turn (the total defect of the sequence is 1). 𝛽 is the index in
𝛼𝑙 of the angle of an arbitrary 2-cone on the long polyline.

• Equation (30c) sets the angle of one of the two copies of 𝑣 . The
other one is set by eq. (13a).

• Equation (30d): 𝛼𝑠 performs a big right turn (the total defect of
the sequence is -1).

• Equation (30e) restricts 𝛼𝑠 from having a left turn with respect
to the initial direction.

D.2 Common Constraints for L-shape and Stair-Shape
Wedescribe the constraints that are the same for both shapes. Similar
to eq. (30d):

−1 = 𝛿𝑠
𝑘

(31)

Classify turns (left, straight, right) of each sequence on the long
polyline:���𝛿𝑙 − 1��� ≤ 𝜇4

(
1 − 𝑏𝑙←

)
(32a)���𝛿𝑙 ��� ≤ 𝜇4

(
1 − 𝑏𝑙↑

)
(32b)���𝛿𝑙 + 1��� ≤ 𝜇4

(
1 − 𝑏𝑙→

)
(32c)

1 = 𝑏𝑙← + 𝑏𝑙↑ + 𝑏𝑙→ (32d)

where 𝑏𝑙←, 𝑏𝑙↑, 𝑏𝑙→ ∈ Z𝑚2 indicate if the sequence 𝛼𝑙0, . . . , 𝛼
𝑙
𝑖
per-

forms the turn (total defect) that 𝑏𝑙 ·
𝑖
represents. 𝜇4 was set to 2.

Let 𝛿𝑠 := 𝐵𝑠1:𝑘−1,1:𝑘−1Δ
𝑠
1:𝑘−1 be sequence defects of the short

polyline without the last angle. Classify turns on the short polyline:���𝛿𝑠 − 1��� ≤ 𝜇4
(
1 − 𝑏𝑠←

)
(33a)���𝛿𝑠 ��� ≤ 𝜇4

(
1 − 𝑏𝑠↑

)
(33b)���𝛿𝑠 + 1��� ≤ 𝜇4

(
1 − 𝑏𝑠→

)
(33c)

1 = 𝑏𝑠← + 𝑏𝑠↑ + 𝑏𝑠→ (33d)

Define the (signed) “width” and “height” of the polylines in terms
of turns:

𝑤𝑙 :=
𝑏𝑙→

1
−
𝑏𝑙←

1

ℎ𝑙 :=
𝑏𝑙↑

1
𝑤𝑠 :=

𝑏𝑠→
1 −

𝑏𝑠←
1

ℎ𝑠 :=
𝑏𝑠↑

1

D.3 Additional L-Shape Constraints

180◦ = 𝛼𝑣𝑎 (34a)

ℎ𝑙 −𝑤𝑠 = −𝑤𝑙 − ℎ𝑠 (34b)

𝑤𝑙 ≤ 0 (34c)

𝑏𝑙→ = 0 (34d)

D.4 Additional Stair-Shape Constraints

270◦ = 𝛼𝑣𝑎 (35a)

𝑤𝑙 +𝑤𝑠 = ℎ𝑙 − ℎ𝑠 (35b)

𝑏𝑙→ = 0 (35c)

D.5 Feasibility
Proposition D.1. If there is a 2-cone in the field, then a gun-shape

polygon is feasible.
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Proposition D.2. If the only positives in the field are 3-cones (the
setting of [Grunbaum 1969]), then an L-shape polygon is feasible.

If there is a 1-cone in the field, then we use an L-shape or a
stair-shape, depending if there is a united cset. We did not prove
feasibility for this case, but the algorithm correctly handled all 1575
fields with the following restrictions:
• The maximum cone degree is 12.
• There are at most four cones of the same degree.
• The total index of the negative cones ≥ −3.
The only two failures were: (i) a field without cones and (ii) a field
with a pair of 3-5-cones (where a quad mesh with these singularities
does not exist). Note that previous work did not handle 1-cones at
all.
For the L-shape and gun-shape, we can solve separately for the

angles and the edge lengths, as done in [Levi 2022].

E PROOFS
Proposition 4.8. The algorithm that constructs the seam (section 4)

handles correctly all cases of negative fields: the connection assignment
problem is always feasible, and the traced seam sets the defect of all
isets to zero except for the corner isets, which have total defect 4.

Proof. A𝑔-torus has 2𝑔 loops and index 𝜒 = 2−2𝑔 (Poincaré–Hopf
theorem). A double loop that is assigned to an even iset or an odd
pair (definition 4.6) balances (sets to zero) index amount of -2, as
explained in section 4.3 (it provides four connections, each is worth
index 0.5). On the one hand, the index of both an even iset and an
odd pair is even, and on the other hand, the amount of index that a
double loop balances is -2 (a divider of an even number). Therefore,
the balancing of each iset’s index is perfect (not partial or fractional).
Since only 𝑔 − 1 double loops are required to balance the index of
all isets, it leaves an excess of a single double loop. This double loop
is assigned to corner isets, giving excess defect 4, which accounts
for turning number 1 of a self-overlapping polygon.

In an (all-)even iset chain, each iset 𝐼 is assigned − idx (𝐼 ) /2 dou-
ble loops to balance its index. According to eq. (2), a balanced iset
(or a regular vertex with index zero) requires two connections to
balance its defect (set it to zero). Each iset has at least one loop,
which can serve as a 0-2 loop connection provider (providing two
connections), and an even chain that is based on 0-2 loop connec-
tions is created. Except for the first iset, each iset in the chain is a
0-2 loop connection receiver. That is, it receives the two necessary
connections that are needed to balance its defect. We still have a
double loop left, which we assign to the first iset that is designated
as corner iset. Now, this iset has two connections more than it re-
quires to balance its defect, which becomes four, which is also the
total defect of the chain, as required for the turning number 1 of the
polygon.

For a chain with odd isets, except for the two odd corner isets, the
rest of the odd isets are paired (always possible since the total index
𝜒 is even). We assign double loops to odd pairs and even isets to
balance their index as before (where each odd pair receives at least
one double loop that is used for a joint loop connection). The rest
of the loops are divided between the two odd corner isets such that
the defect (and not index) of each one is zero (for example, an iset

with index -1 that receives four connections). Finally, we connect
all the even isets, odd pairs, and corner isets in a chain using tree
connections, where each corner iset is at one end of the chain. Each
even iset and odd pair receives two connections, which balances
their defect. Each corner iset receives a single connection, which
sets its defect to two. The total chain defect is four, as required.

See section 4.3.1 for simple examples of both chain cases.

This concludes the proof for isets with a single cone. Next, we
consider the general case, where an iset can have up to four cones.
External connections remain unchanged, and we need to prove that
the internal connections in an iset are handled correctly.

Consider the input to the problem in eq. (4). Alg. 1 creates seven
types of isets, each has four csets at most. After loop reduction,
there are eight types of csets (idx ∈ {−0.25𝑘 | 𝑘 = 1, . . . , 8}) that
can comprise an iset.

If it is an even iset, then there are three cases of external connec-
tions: the iset can be the first in an even iset chain, in the middle of
an even chain, or in the middle of an odd chain.

If it is an odd iset, then there are two cases of external connections:
the iset can be either at the end of a chain or in the middle.
We end up with 76 cases. The problem in eq. (4) does not need

to be correct for a more general case, and it was simplified to treat
only these 76 cases. We tested to confirm that all of them are han-
dled correctly. That is, for each case of iset, the internal connection
assignment problem is feasible, the defect is set as required, and the
connection graph contains a single connected component. Adding
back reduced double loops to an iset with adjusted index (and re-
verting its index) does not affect its defect. On top of verifying the
connection assignment for all cases, we also verified that the 5-step
pairing procedure in appendix A produces a correct result.

To summarize, the assignment of internal and external connec-
tions is feasible, creates a single connected component, and produces
the required defect according to assigned corners in all cases. □

Proposition 5.1. We end up with negative-dominant csets in the
foundation set.

Proof. Assume towards contradiction that in the end of the
process that creates foundation csets (section 5), there exists a cset
𝑐 with non-negative index.

Consider the iteration of adding a positive cone 𝑝 to a cset 𝑐
with the lowest index, where before the iteration all the csets were
negative-dominant, and adding 𝑝 made 𝑐 non-negative. We have
that before the iteration:

idx
(
𝑝
)
≥ − idx (𝑐) .

It cannot be that idx
(
𝑝
)
= − idx (𝑐) since then idx

(
𝑐 ∪ {𝑝}

)
would

be a balanced set, which can be removed from the foundation set
without influencing its index, contradicting the optimality of eq. (11).
Consider the cases of the index of 𝑝:
• idx

(
𝑝
)
= 0.25. Then, idx (𝑐) ≥ 0, which contradicts negative-

dominant.
• idx

(
𝑝
)
= 0.5. Then, idx (𝑐) = −0.25. Since the total index (𝜒) is

integer, there must be another cset 𝑐′ with index -0.25 (and there
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cannot be another positive cone with index 0.25, which would
create a balanced set). But then, 𝑐 ∪ 𝑐′ ∪ {𝑝} would be a balanced
set—contradiction.

• idx
(
𝑝
)
= 0.75. Then, all the options to reach an integer 𝜒 would

result in creating a balanced set—contradiction.
□

Proposition 6.1. For a mesh of genus 𝑔 > 1, there is a solution
to the problem in eqs. (12) to (16) with the additional constraints in
appendices B.2 and B.3.

Proof. Consider the foundation polygon. In appendix A.1, we
specified how the seam connects the isets such that after cutting it,
there are two polylines. One polyline has one copy of a negative
cone, and the second polyline has all the rest of its copies.
From the 76 types of odd and even isets, 31 are corner isets, and

the rest are balanced (defect zero). The minimizer of eq. (4) has
maximal cset defect of four. It is achieved in the case of a corner
iset in an even chain with a single cset. A cset ends up with defect
larger than one only if it belongs to a corner iset.

From eq. (2), we have for a vertex 𝑣 in a balanced iset (defect zero)

Δ (𝑣) = 2𝑛 − 𝛼

90◦
≤ 1

90◦
(
2 − 1

𝑛

)
≤ 𝛼

𝑛
.

That is, the average copy angle is > 90◦ if 𝑛 > 1. On the other hand,
for a negative cone 𝑣 , the minimal angle is 450◦, and the average
copy angle is > 90◦ if 𝑛 < 5. In conclusion, the average copy angle
is > 90◦, and therefore there must be at least one copy with angle
> 90◦. We set the angle of the single copy in a polyline to 180◦.
The result is that a balanced iset (defect zero) has one polyline that
consists of single copies (each from a different cone) with 180◦ and
a second polyline with a sequence of all the other copies. Since a
balanced iset has defect zero and the first polyline has defect zero,
the second polyline also has defect zero.
There are 34 types of odd isets, half of them are corner isets and

the other half are in an external joint-loop connection pair (there
are 17 odd iset types with different csets before designating them as
corner or in an odd pair). There are 42 types of even isets, third of
them are corner isets. After the step of uniting odd isets, the even
iset types remain the same. There are 2

(17
2
)
= 272 types of paired

odd isets (as corners or as joint-loop pairs). Since the number of iset
types after the iset union step is still relatively small, it is possible to
test all the corresponding polylines for the feasibility of a polygon
that consists of a corner iset and a single balanced iset (defect zero).

Given such a polygon, it is possible to add another balanced iset
(defect zero) since its two polylines can be set to have defect zero
(keeping meta-edges between corners monotone and straight). This
addition can be viewed as replacing the single balanced iset with
two balanced isets. Since the polygon is feasible for any balanced
iset, the bounding box of a polyline of the balanced iset (and its con-
nections to the rest of the polygon) is general and can accommodate
two consecutive iset polylines instead. This can be generalized to
any number of balanced isets. This concept is similar to a polygon
accommodating a dummy edge [Levi 2022, proof of theorem 5],
which serves as a stand-in for polylines with similar first and last

Fig. 16. L-shape polygons, corresponding to the fields (left to right): {3, 5}-
cones, {3, 5, 3, 5}-cones, and {3, 3, 6}-cones.

edge directions (which are straight in this case due to defect zero of
the polyline).
Adding reduced double loops to a polygon can be done by setting

all the copy angles of the vertex that owns them to 180◦ (defect
zero). □

Proposition D.1. If there is a 2-cone in the field, then a gun-shape
polygon is feasible.

Proof. Denote the two edges incident to the regular copy 𝑣𝑎
as 𝑒1 and 𝑒2 (CCW). For example, in fig. 13 (left), there are the
brown and pink edges. 𝑒1 comprises the left side of the polygon,
and we set it to an arbitrary length to match the right side. The
bottom side of the polygon contains 𝑒2, which can vary in length
arbitrarily without affecting the polygon consistency. The top side
of the polygon contains the edge that is incident to the 2-cone, and
it can also vary in length arbitrarily. These two degrees of freedom
(length of two edges) enable setting the same length for the top and
bottom sides of the polygon, ensuring polygon consistency.
The constraints eq. (30a) and eq. (30e) are not necessary, and they

serve only to create a nicer gun shape. □

Proposition D.2. If the only positives in the field are 3-cones (the
setting of [Grunbaum 1969]), then an L-shape polygon is feasible.

Proof. Consider fig. 16. In the polygon with the single {3, 5}-
cone pair, the positive copy coincides with the negative copy on
the opposing edge. There are no DOFs in this case to avoid that.
The figure shows two additional constructions. One adds another
{3, 5}-cone pair, and the other groups two 3-cones with a 6-cone.
These can be generalized to any number and type of balanced csets
with 3-cones. □
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Fig. 17. Models from table 1. From left to right: the seam graph, polygon, final mapping, and [Myles et al. 2014].
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Fig. 18. Models from table 1. From left to right: the seam graph, polygon, final mapping, and [Myles et al. 2014].
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Fig. 19. Models from table 1. From left to right: the seam graph, polygon, final mapping, and [Myles et al. 2014].
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